|
|
(9 intermediate revisions by 3 users not shown) |
Line 13: |
Line 13: |
| <header id="header"></html> | | <header id="header"></html> |
| {{UNITN-Trento/mainMenu}} | | {{UNITN-Trento/mainMenu}} |
− | <html><script>jQuery('#menulin__project_results_modeling, #menulin_project_results, #menulin_project').addClass('current');</script><script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script> </header> | + | <html><script>jQuery('#menulin_project_modeling, #menulin_project').addClass('current');</script><script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script> </header> |
| <!-- Main --> | | <!-- Main --> |
| | | |
Line 33: |
Line 33: |
| </header> | | </header> |
| <p><span class="i_enph">We really want to thank the team iGEM Kent 2015 for this modeling born from the collaboration between the two groups</span>.</p> | | <p><span class="i_enph">We really want to thank the team iGEM Kent 2015 for this modeling born from the collaboration between the two groups</span>.</p> |
− | <p>Proteorhodopsin is a light-powered proton pump. This protein has the property to use light energy to generate an outward proton flux that can subsequently power cellular processes, such as ATP synthesis.After having experimentally assessed that our engineered E. coli was able to produce more ATP thanks to the proteorhodopsin, we decided to quantify this effect by modeling the amount of ATP that can be produced in function of the proteorhodopsin’s activation.</p> | + | <p>Proteorhodopsin is a light-powered proton pump. This protein has the property to use light energy to generate an outward proton flux that can subsequently power cellular processes, such as ATP synthesis. After having experimentally assessed that our engineered <i>E. coli</i> was able to produce more ATP thanks to the proteorhodopsin, we decided to quantify this effect by modeling the amount of ATP that can be produced in function of the proteorhodopsin’s activation.</p> |
| </div> | | </div> |
| </section> | | </section> |
Line 40: |
Line 40: |
| <div class="content"> | | <div class="content"> |
| <header> | | <header> |
− | <h3 class="wow fadeInDown">What is the number of ATP molecules that can be produced per second as a function of light irradiance that hits the bacterial membrane?</h3> | + | <h3 class="wow fadeInDown">How many ATP molecules?</h3> |
| </header> | | </header> |
− | <p>Once a photon is absorbed by proteorhodopsin (PR), PR must complete its photocycle before it can absorb another photon <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_1')" href="#refs_1">[1]</a></sup>. At high light irradiance, this leads to saturation. For this we choose to exploit the Michaelis-Menten kinetics, where V_max is the maximum rate of the system and the Michaelis-Menten constant, K<sub>m</sub>, is the substrate concentration at which the reaction rate is $\frac{1}{2}V\max$.</p> | + | |
− | <p>Walter et al. demonstrated that the system is analogous to a circuit (figure 1), in this circuit representation; the proteorhodopsin (PR) acts like a battery with internal resistance. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup><sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_3')" href="#refs_3">[3]</a></sup></p>
| + | |
| <div class="row"> | | <div class="row"> |
− | <div class="12u 12u(narrower)"> | + | <div class="6u 12u(narrower)"> |
| | | |
− | <div class="captionbox" style="max-width:900px;">
| + | |
− | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" title="Membrane as an electric circuit"><img src="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" alt="" style="width:100%;"/></a> | + | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" title="Membrane as an electric circuit"><img src="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" alt="" style="width:100%; max-width:800px;"/></a> |
| + | |
| <p class="image_caption"><span>Membrane as an electric circuit</span>Electric circuit analogy for the membrane <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> | | <p class="image_caption"><span>Membrane as an electric circuit</span>Electric circuit analogy for the membrane <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> |
− | </div> | + | </div> |
| + | <div class="6u 12u(narrower)"> |
| + | <p><strong>What is the number of ATP molecules that can be produced per second as a function of light irradiance that hits the bacterial membrane?</strong><br /> |
| + | Once a photon is absorbed by proteorhodopsin (PR), PR must complete its photocycle before it can absorb another photon <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_1')" href="#refs_1">[1]</a></sup>. At high light irradiance, this leads to saturation. For this we choose to exploit the Michaelis-Menten kinetics, where V_max is the maximum rate of the system and the Michaelis-Menten constant, K<sub>m</sub>, is the substrate concentration at which the reaction rate is $\frac{1}{2}V\max$.</p><br /> |
| + | <p>Walter et al. demonstrated that the system is analogous to a circuit (figure 1), in this circuit representation; the proteorhodopsin (PR) acts like a battery with internal resistance. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup><sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_3')" href="#refs_3">[3]</a></sup></p> |
| + | </div> |
| + | </div> |
| | | |
− | <p>The current through the system is inversely related to the PR resistor and is dependent on light irradiance.</p>
| + | <p>The current through the system is inversely related to the PR resistor and is dependent on light irradiance.</p> |
− | <p style="text-align:center">$R_{PR=}\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p>
| + | <p style="text-align:center">$R_{PR=}\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> |
− | <p>Walter et al. determined that $V_{\max}$ is fixed by the boundary condition that $R_{PR≈}\frac{R_{\sin k}}{10}$ at the highest light irradiance $I=\frac{160mW}{cm^{2}}$. $\; R_{\sin k}≈R_{\mbox{re}s}≈10^{15}\; \Omega$ and $K_{m=}\frac{60mW}{cm^{2}}$. Where light irradiance of $\frac{20mW}{cm^{2}}\;$ is roughly equivalent to PR absorption from solar illumination at sea level. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p>
| + | <p>Walter et al. determined that $V_{\max}$ is fixed by the boundary condition that $R_{PR≈}\frac{R_{\sin k}}{10}$ at the highest light irradiance $I=\frac{160mW}{cm^{2}}$. $\; R_{\sin k}≈R_{\mbox{re}s}≈10^{15}\; \Omega$ and $K_{m=}\frac{60mW}{cm^{2}}$. Where light irradiance of $\frac{20mW}{cm^{2}}\;$ is roughly equivalent to PR absorption from solar illumination at sea level. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> |
− | <p>At the boundary condition:</p>
| + | <p>At the boundary condition:</p> |
− | <p style="text-align:center">$Rpr=\frac{R_{\sin k}}{10}=10^{14}\Omega =\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p>
| + | <p style="text-align:center">$Rpr=\frac{R_{\sin k}}{10}=10^{14}\Omega =\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> |
− | <p>Hence:</p>
| + | <p>Hence:</p> |
− | <p style="text-align:center">$V\max \; =\; \frac{K_{m}+I}{R_{PR}*I}\; =\; 1.375*10^{-14}\; \Omega ^{-1}$</p>
| + | <p style="text-align:center">$V\max \; =\; \frac{K_{m}+I}{R_{PR}*I}\; =\; 1.375*10^{-14}\; \Omega ^{-1}$</p> |
− | <p>The rate of reaction, $v$, has units of $\Omega ^{\left( -1 \right)}$; through dimensional analysis we can see that $\Omega ^{-1}\; =\; \frac{Amps}{Volts}\; =\frac{coulombs}{\left( \sec ond*voltage \right)}$.
| + | <p>The rate of reaction, $v$, has units of $\Omega ^{\left( -1 \right)}$; through dimensional analysis we can see that $\Omega ^{-1}\; =\; \frac{Amps}{Volts}\; =\frac{coulombs}{\left( \sec ond*voltage \right)}$. |
− | The voltage across the PR, $V_{PR=}0.2\; Volts\;$ <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup> and the charge of a proton is $q=1.6*10^{\left( -19 \right)}\; \mbox{C}$.</p>
| + | The voltage across the PR, $V_{PR=}0.2\; Volts\;$ <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup> and the charge of a proton is $q=1.6*10^{\left( -19 \right)}\; \mbox{C}$.</p> |
− | <p>Therefore we can work out the number of protons pumped by the PR per second as</p>
| + | <p>Therefore we can work out the number of protons pumped by the PR per second as</p> |
− | <p style="text-align:center">$N_{Proton}\; =\; \frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p>
| + | <p style="text-align:center">$N_{Proton}\; =\; \frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p> |
− | <p>If an electron pair is composed of 10 protons and there is a net gain of 2.5 ATP molecules per electron pair then the number of ATP molecules produced per second is simply:</p>
| + | <p>If an electron pair is composed of 10 protons and there is a net gain of 2.5 ATP molecules per electron pair then the number of ATP molecules produced per second is simply:</p> |
− | <p style="text-align:center">$N_{ATP}\; =\; \frac{1}{4}N_{Proton}\; =\; \frac{1}{4}*\frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p>
| + | <p style="text-align:center">$N_{ATP}\; =\; \frac{1}{4}N_{Proton}\; =\; \frac{1}{4}*\frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p> |
− | <p>The rate of ATP production per second per bacterium as a function of light irradiance has been plotted in figure 2. From the graph, most ATP production rates per second per bacterium are in the range 10<sup>2</sup>-10<sup>3</sup>, after 5 minutes of illumination each cell would have produced a net gain of about 10<sup>5</sup> ATP molecules, which agrees with experiment <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_4')" href="#refs_4">[4]</a></sup>.</p>
| + | <p>The rate of ATP production per second per bacterium as a function of light irradiance has been plotted in figure 2. From the graph, most ATP production rates per second per bacterium are in the range 10<sup>2</sup>-10<sup>3</sup>, after 5 minutes of illumination each cell would have produced a net gain of about 10<sup>5</sup> ATP molecules, which agrees with experiment <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_4')" href="#refs_4">[4]</a></sup>.</p> |
− |
| + | |
− | <div class="captionbox" style="max-width:900px;">
| + | <div class="captionbox" style="max-width:900px; width:80%;"> |
− | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" title="A Michaelis-Menten curve"><img src="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" alt="" style="width:100%;"/></a>
| + | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" title="A Michaelis-Menten curve"><img src="https://static.igem.org/mediawiki/2015/1/1a/Unitn_pics_modeling_2.png" alt="" style="width:100%;"/></a> |
− | <p class="image_caption"><span>A Michaelis-Menten curve</span>ATP production per second per bacterium as a function of a irradiance of light.</p>
| + | <p class="image_caption"><span>A Michaelis-Menten curve</span>ATP production per second per bacterium as a function of a irradiance of light.</p> |
− | </div>
| + | </div> |
− | </div>
| + | |
− | </div> | + | |
| </div> | | </div> |
| </section> | | </section> |
Line 79: |
Line 83: |
| <div class="content"> | | <div class="content"> |
| <header> | | <header> |
− | <h3 class="wow fadeInDown">Functions used</h3> | + | <h3 class="wow fadeInDown">MATLAB code used</h3> |
| </header> | | </header> |
− | <p>ciao</p> | + | <div style="width=80%;margin:auto;"><img src="https://static.igem.org/mediawiki/2015/1/10/UniTN_pics_2015_code2.png"/></div><br/> |
| + | To produce the graph |
| + | <div style="width=80%;margin:auto;"><img src="https://static.igem.org/mediawiki/2015/0/0e/UniTN_pics_2015_code1.png"/></div> |
| </div> | | </div> |
| </section> | | </section> |
− |
| |
− | <section class="wrapper style4 container" style="margin-top:1em;">
| |
− | <div class="content">
| |
− | <header>
| |
− | <h3 class="wow fadeInDown">What we used to produce the graphs</h3>
| |
− | </header>
| |
− | <p>ciao</p>
| |
− | </div>
| |
− | </section>
| |
− |
| |
| <section class="wrapper style4 container"> | | <section class="wrapper style4 container"> |
| <!-- Content --> | | <!-- Content --> |
Line 99: |
Line 95: |
| <h3 class="wow fadeInDown">References</h3> | | <h3 class="wow fadeInDown">References</h3> |
| </header> | | </header> |
− |
| |
| <ol type="1" class="sourcebox"> | | <ol type="1" class="sourcebox"> |
| <a class="anchor-off" name="refs_1" id="refs_1"></a> | | <a class="anchor-off" name="refs_1" id="refs_1"></a> |
Line 105: |
Line 100: |
| | | |
| <a class="anchor-off" name="refs_2" id="refs_2"></a> | | <a class="anchor-off" name="refs_2" id="refs_2"></a> |
− | <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/17277079" target="_blank" class="sourcebox-link">Walter, J. M., Greenfield, D., Bustamante, C., & Liphardt, J. (2007). Light-powering Escherichia coli with proteorhodopsin. Proceedings of the National Academy of Sciences, 104(7), 2408-2412.</a></li> | + | <li>Walter, J. M., Greenfield, D., Bustamante, C., & Liphardt, J. (2007).<a href="http://www.ncbi.nlm.nih.gov/pubmed/17277079" target="_blank" class="sourcebox-link">Light-powering Escherichia coli with proteorhodopsin.</a><br />Proceedings of the National Academy of Sciences, 104(7), 2408-2412.</li> |
| | | |
| <a class="anchor-off" name="refs_3" id="refs_3"></a> | | <a class="anchor-off" name="refs_3" id="refs_3"></a> |
− | <li><a href="http://www.ncbi.nlm.nih.gov/pubmed/12206764" target="_blank" class="sourcebox-link">Friedrich, T., Geibel, S., Kalmbach, R., Chizhov, I., Ataka, K., Heberle, J., ... & Bamberg, E. (2002). Proteorhodopsin is a light-driven proton pump with variable vectoriality. Journal of molecular biology, 321(5), 821-838.</a></li> | + | <li>Friedrich, T., Geibel, S., Kalmbach, R., Chizhov, I., Ataka, K., Heberle, J., & Bamberg, E. (2002).<a href="http://www.ncbi.nlm.nih.gov/pubmed/12206764" target="_blank" class="sourcebox-link">Proteorhodopsin is a light-driven proton pump with variable vectoriality.</a><br />Journal of molecular biology, 321(5), 821-838.</li> |
| | | |
| <a class="anchor-off" name="refs_4" id="refs_4"></a> | | <a class="anchor-off" name="refs_4" id="refs_4"></a> |
− | <li><a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838496/" target="_blank" class="sourcebox-link">Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., & DeLong, E. F. (2007). Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proceedings of the National Academy of Sciences, 104(13), 5590-5595.</a></li> | + | <li>Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., & DeLong, E. F. (2007).<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838496/" target="_blank" class="sourcebox-link"> Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host.</a><br />Proceedings of the National Academy of Sciences, 104(13), 5590-5595.</li> |
| </ol> | | </ol> |
| </section> | | </section> |