Difference between revisions of "Team:Tsinghua/Hardware"
ChiaweiWang (Talk | contribs) |
ChiaweiWang (Talk | contribs) |
||
Line 1: | Line 1: | ||
{{Tsinghua}} | {{Tsinghua}} | ||
− | + | <p align="center"><strong>Hardware: E-light 1.0</strong><br> | |
− | + | The E-light 1.0 hardware system has 3 major components: the light-exposure & bacterial culture system, the controlling circuit and the computer interacting port.<br> | |
− | + | The light-exposure & bacterial culture system is based on a 24-well plate coupled with tri-color LEDs. The controlling circuit utilizes 3 AT89S52-24PU DIP-40 SCMs (single chip microcomputer) to execute programmed-controlling of the 24 tri-color LEDs, while the computer interacting port monitors the whole system through given protocol sequences. The ultimate result is the programmable operation and real-time monitoring of light-exposure (on both timing and wave-length) on every single well.<br> | |
− | + | <strong>Software: E-code 1.0</strong><br> | |
− | <p | + | The E-code 1.0 software system aims to provide convenient commanding for users of the E-light hardware system. The software provides two operating modes: the E.coli-code mode is able to convert any given information into light-coded files, and therefore turn these files into actual light-exposure commands of the E-light hardware system. With the help of the coding-plasmids from our CRISPR-Recombinase system, we can eventually store any information into the E.coli DNA and of course, extract the information later on through sequencing. The self-code mode provides more flexible input options, enabling users to program the light-exposure commands manually for every single bacterial-culture-unit. Thus, combined with our light-switch, the user is able to gain better control over the bacteria’s metabolism pathways.<br> |
− | + | After successfully constructing all the systems required and confirming its efficacy, we can bridge the light-switchable TCS and the dCas9-recombines system together. In this way, precise gene editing and information storing can be achieved by utilizing the light system to regulate the dCas9-recombinase hybrid. </p> | |
− | + | ||
− | + | ||
− | </ | + | |
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | |
− | < | + | |
− | < | + | |
− | + | ||
− | </ | + |
Revision as of 22:12, 18 September 2015
Hardware: E-light 1.0
The E-light 1.0 hardware system has 3 major components: the light-exposure & bacterial culture system, the controlling circuit and the computer interacting port.
The light-exposure & bacterial culture system is based on a 24-well plate coupled with tri-color LEDs. The controlling circuit utilizes 3 AT89S52-24PU DIP-40 SCMs (single chip microcomputer) to execute programmed-controlling of the 24 tri-color LEDs, while the computer interacting port monitors the whole system through given protocol sequences. The ultimate result is the programmable operation and real-time monitoring of light-exposure (on both timing and wave-length) on every single well.
Software: E-code 1.0
The E-code 1.0 software system aims to provide convenient commanding for users of the E-light hardware system. The software provides two operating modes: the E.coli-code mode is able to convert any given information into light-coded files, and therefore turn these files into actual light-exposure commands of the E-light hardware system. With the help of the coding-plasmids from our CRISPR-Recombinase system, we can eventually store any information into the E.coli DNA and of course, extract the information later on through sequencing. The self-code mode provides more flexible input options, enabling users to program the light-exposure commands manually for every single bacterial-culture-unit. Thus, combined with our light-switch, the user is able to gain better control over the bacteria’s metabolism pathways.
After successfully constructing all the systems required and confirming its efficacy, we can bridge the light-switchable TCS and the dCas9-recombines system together. In this way, precise gene editing and information storing can be achieved by utilizing the light system to regulate the dCas9-recombinase hybrid.