|
|
(9 intermediate revisions by 3 users not shown) |
Line 30: |
Line 30: |
| .adjust-ipad1{ | | .adjust-ipad1{ |
| width: 52%; | | width: 52%; |
| + | margin: 0 auto 20px auto; |
| } | | } |
| .adjust-ipad2{ | | .adjust-ipad2{ |
| width:79%; | | width:79%; |
| + | margin:0 auto; |
| } | | } |
| } | | } |
Line 52: |
Line 54: |
| <div class="container head-container"> | | <div class="container head-container"> |
| <div class="logo"> | | <div class="logo"> |
− | <a href="index.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/OUC-China-Team_Logo.png" alt="" class="img-responsive"></a> | + | <a href="https://2015.igem.org/Team:OUC-China"><img src="https://static.igem.org/mediawiki/2015/4/4b/OUC-China-Team_Logo.png" alt="" class="img-responsive"></a> |
| </div> | | </div> |
| <span class="menu"> Menu</span> | | <span class="menu"> Menu</span> |
Line 142: |
Line 144: |
| </p> | | </p> |
| <p> | | <p> |
− | Sarah A Stanley et al. [3]have successfully constructed remote regulation system in mice (Fig.1.), based on ferritin-TRPV1 system. Ferritin is a kind of iron-storage protein in organisms, which could synthesize ferric oxihydroxide core in its hollow protein shell [6]. TRPV1 is a kind of temperature-sensitive channel: When local temperature rises, TRPV1 gates calciumto activate a Ca<sup>2+</sup> sensitive promoter [4]. However, TRPV1 has limited use in Prokaryote. Thus, we designed Magthermo coli—a platform for remote regulation of gene expression by electromagnetic signal in <i>E.coli</i>. | + | Sarah A Stanley et al. [3]have successfully constructed remote regulation system in mice (Fig.1.), based on ferritin-TRPV1 system. Ferritin is a kind of iron-storage protein in organisms, which could synthesize ferric oxihydroxide core in its hollow protein shell [6]. TRPV1 is a kind of temperature-sensitive channel: When local temperature rises, TRPV1 gates calcium to activate a Ca<sup>2+</sup> sensitive promoter [4]. However, TRPV1 has limited use in Prokaryote. Thus, we designed Magthermo coli—a platform for remote regulation of gene expression by electromagnetic signal in <i>E.coli</i>. |
| </p> | | </p> |
| </div> | | </div> |
Line 149: |
Line 151: |
| <h3>How does it work?</h3> | | <h3>How does it work?</h3> |
| <p> | | <p> |
− | There are two main components in our magthermo coli: magnetic <B>receiver & thermosensitive</B> regulator. Inducing with electromagnetic field,magnetic receiver will heat, raising the ambient temperature. In response to the change of temperature, thermosensitive regulator will initiate the downstream gene (GFP for example) expression. | + | There are two main components in our magthermo coli: magnetic <B>receiver & thermosensitive</B> regulator. Inducing with electromagnetic field, magnetic receiver will heat, raising the ambient temperature. In response to the change of temperature, thermosensitive regulator will initiate the downstream gene (GFP for example) expression. |
| </p> | | </p> |
| <div class="row"> | | <div class="row"> |
Line 155: |
Line 157: |
| <h3>Magnetic Receiver</h3> | | <h3>Magnetic Receiver</h3> |
| <p> | | <p> |
− | Magnetic nanoparticles can serve as a nanosource of heat [5]. That’s why we choose Ferritinas magnetic receiver: <B>Ferritin</B> is a kind of iron-storage protein in many organisms, which could synthesize ferric oxihydroxide core in its hollow protein shell [6] (Fig.2.). Once exposed to electromagnetic field, the ferric oxihydroxide core will heat, raising the ambient temperature. | + | Magnetic nanoparticles can serve as a nanosource of heat [5]. That’s why we choose Ferritin magnetic receiver: <B>Ferritin</B> is a kind of iron-storage protein in many organisms, which could synthesize ferric oxihydroxide core in its hollow protein shell [6] (Fig.2.). Once exposed to electromagnetic field, the ferric oxihydroxide core will heat, raising the ambient temperature. |
| </p> | | </p> |
| </div> | | </div> |
Line 167: |
Line 169: |
| <h3>Thermosensitive Regulator</h3> | | <h3>Thermosensitive Regulator</h3> |
| <p> | | <p> |
− | For thermosensitive regulator,we chose RNA thermometer and designed a thermosensitive T7 RNA polymerase. <B>RNA thermometer</B> is a structured RNA which could expose SD sequences only at appropriate temperature [7] (Fig.3.). <B>Thermosensitive T7 RNA polymerase</B> is a T7 RNA polymerase interrupted by a temperature-sensitive intein. Temperature-sensitive Intein is a kind of polypeptide that could self-splice and ligate it’s flanking polypeptides at specific temperature. Thus, interrupted T7 RNA polymerase can ininate the downstream signaling only at appropriate temperature[8] (Fig.4.). | + | For thermosensitive regulator, we chose RNA thermometer and designed a thermosensitive T7 RNA polymerase. <B>RNA thermometer</B> is a structured RNA which could expose SD sequences only at appropriate temperature [7] (Fig.3.). <B>Thermosensitive T7 RNA polymerase</B> is a T7 RNA polymerase interrupted by a temperature-sensitive intein. Temperature-sensitive Intein is a kind of polypeptide that could self-splice and ligate it’s flanking polypeptides at specific temperature. Thus, interrupted T7 RNA polymerase can initiate the downstream signal only at appropriate temperature[8] (Fig.4.). |
| </p> | | </p> |
| <div class="row"> | | <div class="row"> |
Line 185: |
Line 187: |
| | | |
| <h2>Measuring Technique</h2> | | <h2>Measuring Technique</h2> |
− | <h3>In mag-receiver section:</h3> | + | <h3>In magnetic-receiver section:</h3> |
| <p> | | <p> |
− | (1)We found it complex and costly to measure magnetism of E.coli, thus, constructed a device for easy measure of magnetism—Captor (Fig.5.).<BR>(2)During verification for in vivo mineralization of ferritin, we found little literatures offering accurately detecting method. Thus, we referenced method in vitro[9] and successfully detected iron core in ferrin after in vivo mineralization.<BR>(3)To supply ourmodeling with concentration of ferritin per cell, we explored a method for valuing protein concentration per cell, and tried to make it more convenient. | + | (1)We found it complicated and costly to measure magnetism of <i>E.coli</i>, thus, constructed a device for easy measure of magnetism—Captor (Fig.5.).<BR>(2)During verification for <i>in vivo</i> mineralization of ferritin, we found little literatures offering accurately detecting method. Thus, we referenced method in vitro[9] and successfully detected iron core in ferritin after <i>in vivo</i> mineralization.<BR>(3)To supply our modeling with concentration of ferritin per cell, we explored a method for valuing protein concentration per cell, and tried to make it more convenient. |
| </p> | | </p> |
− | <h3>In thermo-regulator section:</h3> | + | <h3>In thermosensitive-regulator section:</h3> |
| <p> | | <p> |
− | (1)We explored the measurement method to identify the efficiency of thermosensitive regulator under heat stress.<BR>(2)During testing PBAD, we found it inconvenient to take photos of different plates and comparing them. Thus, we extended the function of Captor, and made it convenient for testing optimal inducement concentration on plates (Fig.6.). | + | (1)We explored the measurement method to identify the efficiency of thermosensitive regulator under heat stress.<BR>(2)During testing pBAD, we found it inconvenient to take photos of different plates or compare them. Thus, we extended the function of Captor, and made it convenient for testing optimal inducement concentration on plates (Fig.6.). |
| </p> | | </p> |
| <div class="row"> | | <div class="row"> |
Line 209: |
Line 211: |
| <div style="background-color:#f2f2f2"> | | <div style="background-color:#f2f2f2"> |
| <h2>References</h2> | | <h2>References</h2> |
− | <p> | + | <p style="font-size:13px;"> |
| [1] R, Bocker, C J, Estler, M, Maywald, et al. Comparison of distribution of doxycycline in mice after oral and intravenous application measured by a high-performance liquid chromatographic method.[J]. Arzneimittelforschung, 1981, 31(12):2116-2117.<BR>[2] Xue, Wang, Xianjun, Chen, Yi, Yang. Spatiotemporal control of gene expression by a light-switchable transgene system.[J]. Nature Methods, 2012, 9(3):266-9.<BR>[3] Stanley S A, Sauer J, Kane R S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles.[J]. Nature Medicine, 2015, 21(1):92-98.<BR>[4] Stanley S A, Gagner J E, Shadi D, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice.[J]. Science, 2012, 336(6081):604-.<BR>[5]Jean-Paul, Fortin, Claire, Wilhelm, Jacques, Servais, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia[J]. J.am.chem.soc, 2007, 129(9):2628-2635.<BR>[6]Bou-Abdallah F, Yang H, Awomolo A, et al. Functionality of the Three-Site Ferroxidase Center of Escherichia coli Bacterial Ferritin (EcFtnA)[J]. Biochemistry, 2013, 53(3):483-495.<BR>[7] https://2008.igem.org/Team:TUDelft<BR>[8] Liang R, Liu X, Liu J, et al. A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli.[J]. Journal of Microbiological Methods, 2007, 68(3):497-506.<BR>[9] Cai Y, Cao C, He X, et al. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size.[J]. International Journal of Nanomedicine, 2015, 10(default):2619-34. | | [1] R, Bocker, C J, Estler, M, Maywald, et al. Comparison of distribution of doxycycline in mice after oral and intravenous application measured by a high-performance liquid chromatographic method.[J]. Arzneimittelforschung, 1981, 31(12):2116-2117.<BR>[2] Xue, Wang, Xianjun, Chen, Yi, Yang. Spatiotemporal control of gene expression by a light-switchable transgene system.[J]. Nature Methods, 2012, 9(3):266-9.<BR>[3] Stanley S A, Sauer J, Kane R S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles.[J]. Nature Medicine, 2015, 21(1):92-98.<BR>[4] Stanley S A, Gagner J E, Shadi D, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice.[J]. Science, 2012, 336(6081):604-.<BR>[5]Jean-Paul, Fortin, Claire, Wilhelm, Jacques, Servais, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia[J]. J.am.chem.soc, 2007, 129(9):2628-2635.<BR>[6]Bou-Abdallah F, Yang H, Awomolo A, et al. Functionality of the Three-Site Ferroxidase Center of Escherichia coli Bacterial Ferritin (EcFtnA)[J]. Biochemistry, 2013, 53(3):483-495.<BR>[7] https://2008.igem.org/Team:TUDelft<BR>[8] Liang R, Liu X, Liu J, et al. A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli.[J]. Journal of Microbiological Methods, 2007, 68(3):497-506.<BR>[9] Cai Y, Cao C, He X, et al. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size.[J]. International Journal of Nanomedicine, 2015, 10(default):2619-34. |
| </p> | | </p> |
Line 225: |
Line 227: |
| <br>Mail to: <a href="mailto:#">oucigem@163.com</a> | | <br>Mail to: <a href="mailto:#">oucigem@163.com</a> |
| </address> | | </address> |
− | <img src="https://static.igem.org/mediawiki/2015/5/53/OUC-China-Sponsor.png" alt="" class="footer-img"> | + | <center><ul class="footer-img"> |
| + | <li> |
| + | <img src="https://static.igem.org/mediawiki/2015/2/27/OUC-China_footer1.png" alt="" class="img-responsive"> |
| + | </li> |
| + | <li> |
| + | <img src="https://static.igem.org/mediawiki/2015/7/7c/OUC-China_footer2.png" alt="" class="img-responsive"> |
| + | </li> |
| + | <li> |
| + | <a href="http://www.genewiz.com/"><img src="https://static.igem.org/mediawiki/2015/0/08/OUC-China_footer3.png" alt="" class="img-responsive"></a> |
| + | </li> |
| + | <li> |
| + | <img src="https://static.igem.org/mediawiki/2015/2/26/OUC-China_footer4.png" alt="" class="img-responsive"> |
| + | </li> |
| + | <li> |
| + | <img src="https://static.igem.org/mediawiki/2015/3/3e/OUC-China_footer5.png" alt="" class="img-responsive"> |
| + | </li> |
| + | <div class="clr"></div> |
| + | </ul></center> |
| </div> | | </div> |
| </footer> | | </footer> |