Difference between revisions of "Team:Dundee/Modeling"

(Prototype team page)
 
(135 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Dundee}}
 
 
<html>
 
<html>
  
<h2> Modeling</h2>
 
  
 +
<script>
 +
$('.chevron_toggleable').on('click', function() {
 +
    $(this).toggleClass('glyphicon-chevron-down glyphicon-chevron-up');
 +
});
 +
</script><!-- This script sets the icons to change once clicked.-->
  
<div class="highlightBox">
+
<script type="text/javascript">
<h4>Note</h4>
+
  $(document).ready(function(){
<p>In order to be considered for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Best Model award</a>, you must fill out this page.</p>
+
  $('a[href^="#"]').on('click',function (e) {
</div>
+
      e.preventDefault();
  
 +
      var target = this.hash,
 +
      $target = $(target);
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
      $('html, body').stop().animate({
 +
          'scrollTop': $target.offset().top
 +
      }, 900, 'swing', function () {
 +
          window.location.hash = target;
 +
      });
 +
  });
 +
});
 +
</script><!-- This script allows for smooth scrolling and allows the use of internal links within the page, with the section name with a # symbol before it.-->
  
<p>
+
<body>
Here are a few examples from previous teams:
+
 
</p>
+
 
<ul>
+
<meta name="viewport" content="width=device-width, initial-scale=1.0"><!-- This command ensures that the page width and scale is transferable to mobile devices.-->
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
+
 
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
+
 
</ul>
+
 
 +
 
 +
    <header id="header-modelling">
 +
    <a class="anchor" id="top"></a><!--This sets an anchor so that internal links can later be used to scroll back to this section quickly using #top reference.-->
 +
        <center>
 +
            <h1><highlight class="highlight">Dry Lab</highlight></h1>
 +
<br>
 +
            <h3><highlight class="highlight">Introduction</highlight></h3>
 +
        </center>
 +
 
 +
      </header><!--The header(h1) and subheader(h3) is set with this command.-->
 +
<div class="container"><!--This sets where the margined part of the pages is started.-->
 +
 
 +
<font  color="white"><!--The font size is set as 4 throughout and colour is white.-->
 +
<a class="anchor" id="overview"></a><!--This sets an anchor so that internal links can later be used to scroll back to this section quickly using #overview reference.-->
 +
    <section id="overview"><!--Set the section name as overview.-->
 +
      <div class="row3"><!--set class as defined in the style.css file.-->
 +
        <div class="row"><!--set class as defined in the style.css file.-->
 +
       
 +
          <div class="col-md-6 feature"  style=""><!--set class as defined in the style.css file.-->
 +
            <div class="row"><!--set class as defined in the style.css file.-->
 +
               
 +
              <h2><b>Introduction</b></h2><!--Set Introduction as a heading for the section.--><br><!--Adds a line break-->  <p><!--The p tag starts a new paragraph.-->In our project three approaches were taken within the dry lab; data analysis using principal component analysis (PCA), modelling using ordinary differential equations (ODEs) and practical physics experiments. Mathematical modelling can be used within synthetic biology to reduce complex biological systems to their key components, allowing for a quantitative understanding of the reactions occurring. Models can then be considered in the lab to allow for optimisation of the techniques to produce the best end result.  ODEs were used to model the change in concentration of substances over time, this was implemented within all aspects of the project; FluID, fingerprint ageing and the Chromate Biosensor.</p><!--End the paragraph.-->
 +
<br><!--Adds a line break-->
 +
<p> PCA is a statistical procedure whereby a dataset with many dimensions is simplified to its principal components in order to visualise hidden correlations. PCA was used to analyse the composition of fingerprints for the fingerprint ageing. Physics experiments were used to investigate the incisions on bones by stainless steel knives to complement the chromium biosensor part of the toolkit. </p>
 +
<br><!--Adds a line break-->
 +
<p> The development of software, such as MATLAB, has allowed for greater use of mathematical models across the whole of synthetic biology. MATLAB was used in all aspects of the dry lab work, all code used can be found in our appendix via links at the bottom of each section. Click on the buttons below to find out more about each section described.</p>
 +
              </div><!--End the div class setting.--> 
 +
   
 +
              </div><!--End the div class setting.-->
 +
<div class="col-md-6 feature"  style=""><!--set class as defined in the style.css file.-->
 +
            <div class="row">
 +
<br>
 +
 
 +
<center>
 +
<img src="https://static.igem.org/mediawiki/2015/b/b8/TeamDundee_keyboard_tiny2.png" width="90%" height="auto"/>
 +
<br>
 +
<br>
 +
<img src="https://static.igem.org/mediawiki/2015/f/fb/TeamDundee-Chrom-tiny2.png" width="90%" height="auto"/>
 +
</center>
 +
            </div><!--End the div class setting.-->
 +
           
 +
 
 +
      </div><!--End the div class setting.-->
 +
    </section><!--End the section.-->
 +
 
 +
</div><!--End the div class setting.-->
 +
 
 +
<a class="anchor" id="selection"></a><!--This sets an anchor so that internal links can later be used to scroll back to this section quickly using #selection reference.-->
 +
    <section id="about" class="row1"><!--Set name of section for links and set class defined by style.css-->   
 +
      <div class="row">
 +
        <div class="col-lg-4">
 +
          <a href="https://2015.igem.org/Team:Dundee/Modeling/FluID"> <span class="glyphicon glyphicon-tint" type="button"></span></a> <!--This button contains a link to the FluID models page.-->
 +
          <h3>FluID</h3>
 +
          <p class="about-content">Find out more about the modelling for each of the components of FluID.</p><!--This is the text displayed underneath the button.-->
 +
        </div>
 +
        <div class="col-lg-4">
 +
          <a href="https://2015.igem.org/Team:Dundee/Modeling/Fingerprints"><span class="glyphicon glyphicon-hand-down" type="button"></span></a><!--This button contains a link to the Fingerprints models page.-->
 +
          <h3>Fingerprint Ageing</h3>
 +
          <p class="about-content">Find out more about principal component analysis (PCA) and modelling of fingerprint ageing.</p><!--This is the text displayed underneath the button.-->
 +
        </div>
 +
        <div class="col-lg-4">
 +
          <a href="https://2015.igem.org/Team:Dundee/Modeling/Chromate"><span class="glyphicon glyphicon-pushpin" type="button"></span></a> <!--This button contains a link to the Chromate models page.-->
 +
          <h3>Chromate Biosensor</h3>
 +
          <p class="about-content">Find out more about modelling of chromate and bone incision experiments.</p><!--This is the text displayed underneath the button.-->
 +
        </div>
 +
 
 +
      </div>
 +
    </section>
 +
   
 +
</font><!-- End the font size and colour tag.-->
 +
 
 +
  </body>
  
  
</div>
 
  
 
</html>
 
</html>
 +
 +
{{:Team:Dundee/navbar}}<!--This adds the navbar from the navbar page.-->
 +
{{:Team:Dundee/footer}}<!--This adds the footer from the navbar page.-->

Latest revision as of 22:21, 18 September 2015

Dry Lab


Introduction

Introduction


In our project three approaches were taken within the dry lab; data analysis using principal component analysis (PCA), modelling using ordinary differential equations (ODEs) and practical physics experiments. Mathematical modelling can be used within synthetic biology to reduce complex biological systems to their key components, allowing for a quantitative understanding of the reactions occurring. Models can then be considered in the lab to allow for optimisation of the techniques to produce the best end result. ODEs were used to model the change in concentration of substances over time, this was implemented within all aspects of the project; FluID, fingerprint ageing and the Chromate Biosensor.


PCA is a statistical procedure whereby a dataset with many dimensions is simplified to its principal components in order to visualise hidden correlations. PCA was used to analyse the composition of fingerprints for the fingerprint ageing. Physics experiments were used to investigate the incisions on bones by stainless steel knives to complement the chromium biosensor part of the toolkit.


The development of software, such as MATLAB, has allowed for greater use of mathematical models across the whole of synthetic biology. MATLAB was used in all aspects of the dry lab work, all code used can be found in our appendix via links at the bottom of each section. Click on the buttons below to find out more about each section described.




FluID

Find out more about the modelling for each of the components of FluID.

Fingerprint Ageing

Find out more about principal component analysis (PCA) and modelling of fingerprint ageing.

Chromate Biosensor

Find out more about modelling of chromate and bone incision experiments.