Difference between revisions of "Team:Tsinghua/Hardware"
ChiaweiWang (Talk | contribs) |
ChiaweiWang (Talk | contribs) |
||
Line 6: | Line 6: | ||
The E-code 1.0 software system aims to provide convenient commanding for users of the E-light hardware system. The software provides two operating modes: the E.coli-code mode is able to convert any given information into light-coded files, and therefore turn these files into actual light-exposure commands of the E-light hardware system. With the help of the coding-plasmids from our CRISPR-Recombinase system, we can eventually store any information into the E.coli DNA and of course, extract the information later on through sequencing. The self-code mode provides more flexible input options, enabling users to program the light-exposure commands manually for every single bacterial-culture-unit. Thus, combined with our light-switch, the user is able to gain better control over the bacteria’s metabolism pathways.<br> | The E-code 1.0 software system aims to provide convenient commanding for users of the E-light hardware system. The software provides two operating modes: the E.coli-code mode is able to convert any given information into light-coded files, and therefore turn these files into actual light-exposure commands of the E-light hardware system. With the help of the coding-plasmids from our CRISPR-Recombinase system, we can eventually store any information into the E.coli DNA and of course, extract the information later on through sequencing. The self-code mode provides more flexible input options, enabling users to program the light-exposure commands manually for every single bacterial-culture-unit. Thus, combined with our light-switch, the user is able to gain better control over the bacteria’s metabolism pathways.<br> | ||
After successfully constructing all the systems required and confirming its efficacy, we can bridge the light-switchable TCS and the dCas9-recombines system together. In this way, precise gene editing and information storing can be achieved by utilizing the light system to regulate the dCas9-recombinase hybrid. </p> | After successfully constructing all the systems required and confirming its efficacy, we can bridge the light-switchable TCS and the dCas9-recombines system together. In this way, precise gene editing and information storing can be achieved by utilizing the light system to regulate the dCas9-recombinase hybrid. </p> | ||
+ | |||
+ | <html> | ||
+ | <div type="container" align="center"> | ||
+ | <p>________________________________________________________________________________________________________________________</p> | ||
+ | <a href="https://2015.igem.org/"><img src="https://static.igem.org/mediawiki/2015/e/e4/IGEM_2015logo.jpg" height="50px;"></a> | ||
+ | <a href="https://2015.igem.org/Team:Tsinghua"><img src="https://static.igem.org/mediawiki/2015/c/cf/Tsinghua_TeamLogo.jpg" height="50px;"></a> | ||
+ | <a href="http://www.tsinghua.edu.cn/en"><img src="https://static.igem.org/mediawiki/2015/5/5c/Tsinghua_thu.jpg" height="50px;"></a> | ||
+ | <a href="http://life.tsinghua.edu.cn/english/"><img src="https://static.igem.org/mediawiki/2015/4/4c/Tsinghua_SLS.jpg" height="50px;"></a> | ||
+ | <a href="http://xuetangban.life.tsinghua.edu.cn/"><img src="https://static.igem.org/mediawiki/2015/b/b5/Tsinghua_xuetangban.jpg" height="50px;"></a> | ||
+ | </div> | ||
+ | </html> |
Revision as of 22:31, 18 September 2015
Hardware: E-light 1.0
The E-light 1.0 hardware system has 3 major components: the light-exposure & bacterial culture system, the controlling circuit and the computer interacting port.
The light-exposure & bacterial culture system is based on a 24-well plate coupled with tri-color LEDs. The controlling circuit utilizes 3 AT89S52-24PU DIP-40 SCMs (single chip microcomputer) to execute programmed-controlling of the 24 tri-color LEDs, while the computer interacting port monitors the whole system through given protocol sequences. The ultimate result is the programmable operation and real-time monitoring of light-exposure (on both timing and wave-length) on every single well.
Software: E-code 1.0
The E-code 1.0 software system aims to provide convenient commanding for users of the E-light hardware system. The software provides two operating modes: the E.coli-code mode is able to convert any given information into light-coded files, and therefore turn these files into actual light-exposure commands of the E-light hardware system. With the help of the coding-plasmids from our CRISPR-Recombinase system, we can eventually store any information into the E.coli DNA and of course, extract the information later on through sequencing. The self-code mode provides more flexible input options, enabling users to program the light-exposure commands manually for every single bacterial-culture-unit. Thus, combined with our light-switch, the user is able to gain better control over the bacteria’s metabolism pathways.
After successfully constructing all the systems required and confirming its efficacy, we can bridge the light-switchable TCS and the dCas9-recombines system together. In this way, precise gene editing and information storing can be achieved by utilizing the light system to regulate the dCas9-recombinase hybrid.