Difference between revisions of "Team:UT-Tokyo/Project"

Line 1: Line 1:
 
{{UT-Tokyo/Header}}
 
{{UT-Tokyo/Header}}
 
<html>
 
<html>
<div class='main'>
+
<body>
 +
      <script type="text/javascript">
 +
        include("./header.html");
 +
      </script>
 +
 
 +
      <div class='main'>
 
         <div class='panel' id='introduction'>
 
         <div class='panel' id='introduction'>
 
           <h2>INTRODUCTION</h2>
 
           <h2>INTRODUCTION</h2>
 
           <h3>Project Overview</h3>
 
           <h3>Project Overview</h3>
 
           <p>
 
           <p>
             Mechanisms for development of living things have been investigated for a long time. In 1952, Alan Turing made a key contribution.
+
             Mechanisms for development of living things have been investigated for a long time. In 1952, Alan Turing made a key contribution. He showed that the interaction of two substances with different diffusion rates can generate spatial patterns of the concentration, which are called Turing Patterns, without any preformed pattern<a href='#reference'>[1]</a>. This pattern can be a base for development.
            He showed that the interaction of two substances with different diffusion rates can generate spatial concentration patterns, which are called Turing Patterns, without any preformed pattern<a href='#reference'>[1]</a>.
+
             The idea has been applied to explain periodical patterns such as hair follicle distribution of mice<a href='#reference'>[2]</a>, stripe formation on zebrafish<a href='#reference'>[3]</a>.
             This idea has been applied to explain hair follicle distribution of mice<a href='#reference'>[2]</a><, stripe formation on zebrafish<a href='#reference'>[3]</a>, and the determination of pigment pattern within avian feather follicles<a href='#reference'>[4]</a>.
+
 
           </p>
 
           </p>
 +
          <img src='ゼブラフィッシュの絵を入れたいらしい' class='figure' style='max-height:300px;'>
 
           <p>
 
           <p>
             Here, We tried to reconstruct Turing Pattern by <i>E. coli</i> in a way of synthetic biology to understand the mechanism more.
+
             Here, we tried to reconstruct Turing Pattern by <i>Escherichia coli</i> in a way of synthetic biology to understand the mechanism more. <i>E. coli</i> has cell-cell communication system called quorum sensing.
            <i>E. coli</i> has cell-cell communication system called quorum sensing. Utilizing this system, we aimed to generate a periodical colony pattren.
+
            Utilizing this system, we aimed to generate a periodical colony pattern. This project leads to further understanding of Turing Pattern, especially characteristics of Turing Pattern generated by genetic circuits.
            This project leads to further understanding of Turing Pattern and development of living things.
+
            It points the way to understanding of development of living things, thus can be applied to tissue formation.
 +
          <img src='コロニーができている図を入れたいらしい' class='figure' style='max-height:300px;'>
 +
          <br />
 +
          <h3>Approach</h3>
 +
          <p>
 +
            Below is the flow of our project.
 +
          </p>
 +
          <p>
 +
            <ol>
 +
              <li><p>1. Develop a strategy for pattern formation using mathematical modeling.</p></li>
 +
              <li><p>2. Experimentally measure parameters to modify the model.</p></li>
 +
              <li><p>3. Fix experimental conditions according to modeling results.</p></li>
 +
              <li><p>4. Generate colony patterns and verify the model by comparing patterns.</p></li>
 +
            </ol>
 
           </p>
 
           </p>
 +
          <img src='上の流れがよくわかる図を入れたいらしい' class='figure' style='max-height:300px;'>
 
           <br />
 
           <br />
 
           <h3>Turing Mechanism</h3>
 
           <h3>Turing Mechanism</h3>
Line 21: Line 40:
 
             Activator promotes its own production and the production of inhibitor, and inhibitor inhibits the production of activator(Fig.1). Inhibitor diffuses faster than activator.
 
             Activator promotes its own production and the production of inhibitor, and inhibitor inhibits the production of activator(Fig.1). Inhibitor diffuses faster than activator.
 
           </p>
 
           </p>
           <img src='./images/project/project-1.png' class='figure' />
+
           <img src='./images/project/project-1.png' class='figure' style='max-height:300px;' />
 
           <h4>Fig.1 Turing mechanism <span>The interaction of activator and inhibitor generates patterns.</span></h4>
 
           <h4>Fig.1 Turing mechanism <span>The interaction of activator and inhibitor generates patterns.</span></h4>
 
           <p>
 
           <p>
             Turing focused on the difference of the diffusion rates, but later Meinhardt and Gierer explained the mechanism from the point of local self-activation and lateral inhibition<a href='#reference'>[5]</a>.
+
             Turing focused on the difference in the diffusion rates, but later Meinhardt and Gierer explained the mechanism from the point of local self-activation and lateral inhibition<a href='#reference'>[4]</a>.
             This explanation is intuitively easy to understand, so we will explain Turing pattern along this explanation.
+
             This explanation is easy to understand intuitively, so we will explain Turing pattern along this explanation.
 
           </p>
 
           </p>
           <img src='./images/project/project-2.png' class='figure' />
+
           <div class='table'>
 +
            <img src='https://static.igem.org/mediawiki/2015/5/53/UT_TOKYO_Fig_Ishikawa1.png' class='figure' />
 +
            <img src='https://static.igem.org/mediawiki/2015/7/75/UT_TOKYO_Fig_Ishikawa2.png' class='figure' />
 +
            <img src='https://static.igem.org/mediawiki/2015/a/af/UT_TOKYO_Fig_Ishikawa3.png' class='figure' />
 +
          </div>
 +
          <div class='table'>
 +
            <img src='https://static.igem.org/mediawiki/2015/c/c9/UT_TOKYO_Fig_Ishikawa4.png' class='figure' />
 +
            <img src='https://static.igem.org/mediawiki/2015/6/66/UT_TOKYO_Fig_Ishikawa5.png' class='figure' />
 +
            <img src='https://static.igem.org/mediawiki/2015/3/37/UT_TOKYO_Fig_Ishikawa6.png' class='figure' />
 +
          </div>
 
           <h4>Fig.2 The generation of a periodical pattern<span><br />The initial condition is (a), and as time passes, a periodical concentration pattern is generated((b)~(f)).</span></h4>
 
           <h4>Fig.2 The generation of a periodical pattern<span><br />The initial condition is (a), and as time passes, a periodical concentration pattern is generated((b)~(f)).</span></h4>
 
           <p>
 
           <p>
             At first, there is no preformed pattern in the field and the concentrations of two substances are homogeneous through the field(Fig2. (a)).
+
             At first, there is no preformed pattern in the field and the concentrations of two substances are homogeneous through the field (Fig. 2 (a)). However, there can be a spot with a little bit high concentration of activator
            However there can be a spot with a little bit high concentration of activator because of perturbation.
+
            because of perturbation. At such a point, the concentration of activator becomes higher and higher, as well as that of inhibitor, by the function of activator (Fig. 2 (b)~(c)). This corresponds to local self-activation. Since
            At such a point, the concentration of activator becomes higher and higher, as well as that of inhibitor, by its function(Fig2. (b)~(c)).
+
            inhibitor diffuses faster than activator, the concentration of inhibitor becomes relatively high around that point and that of activator becomes low because of the inhibitory effect of inhibitor there (Fig. 2 (d)~(e)). This corresponds to lateral
            This corresponds to local self-activation. Since inihibitor diffuses faster than activator, the concentration of inhibitor becomes relatively high around that point and that of activator becomes low because of the inhibitory effect of inhibitor there(Fig2. (d)~(e)).
+
            inhibition. Therefore, a spot of activator is generated. This reaction occurs at different points in the field, and the distance between each spot is regulated by the interaction of the two substances (Fig. 2 (f)). In this way, a periodical pattern is generated in the field.
            This corresponds to lateral inhibition. Therefore, a spot of activator is generated. This reaction occurs at different points in the field,
+
            and the distance between each spot is regulated by the interaction of the two substances(Fig2. (f)). In this way, a periodical pattern is generated in the field.
+
 
           </p>
 
           </p>
 
           <br />
 
           <br />
 
           <h3>Advantage Of Synthetic Biological Approach</h3>
 
           <h3>Advantage Of Synthetic Biological Approach</h3>
 
           <p>
 
           <p>
             Pattens of living things have been investigated for a long time, but it was not easy to prove directly if these patterns are produced by the reaction-diffusion systems or another mechanism.
+
             Pattens of living things have been investigated for a long time, but it was not easy to prove directly if these patterns are produced by the reaction-diffusion systems or another mechanism because living systems are so complex. Biologists still face a big problem: how activator and inhibitor
            Living systems are so complex that most research was exclusively theoretical. Biologists still face a big problem: identification of proper molecules acting as activator and inhibitor.
+
            interacts in vivo. We have little information about what interactions between them generate what patterns. If we can control the interactions, the relation between interactions and patterns can be revealed.
          </p>
+
             We therefore reconstructed a Turing system using two advantages of synthetic biology; controllability and biological directness. We can change the diffusion rate of <i>E. coli</i> and the strength of inhibitory effects of inhibitor by inducing synthetic circuit, which can be a great advantage of the experimental system. Chemical system has a similar advantage,
          <p>
+
            but it is far from living systems. For example, it does not include processes of transcription and translation, which is necessary for living things, through the interaction of two factors. Our system uses cells themselves for pattern formation, so it may be directly applied to developmental studies and point the way to <a href='#application'>tissue formation</a>.
             We therefore reconstructed a Turing system using two advantages of synthetic biology; controllability and biological directness.
+
            We can change the diffusion rate of <i>E. coli</i> and the strength of inhibitory effects of inhibitor by inducing synthetic circuit, which can be a great advantage of the experimental system.
+
            Chemical system has a similar advantage, but it is far from living systems. Our system uses cells themselves for pattern formation, so it may be directly applied to developmental studies.
+
 
           </p>
 
           </p>
 
         </div>
 
         </div>
Line 52: Line 75:
 
         <div class='panel' id='strategy'>
 
         <div class='panel' id='strategy'>
 
           <h2>STRATEGY</h2>
 
           <h2>STRATEGY</h2>
           <p>We designed three different strategies to realize pattern formation. </p>
+
           <p>As explained in the part of Introduction, the system of Turing pattern is based on the interaction between two factors; activator and inhibitor. To achieve the formation of Turing pattern, two conditions are required on this system.
           <h3>Strategy 1</h3>
+
          </p>
             <p>The first one is based on Turing’s classic model. (Figure1)</p>
+
          <p>
             <img src='./images/project/project-3.png' class='figure' />
+
            1. When the diffusion effect is negligible, the system is monostable; the concentrations of two factors take a constant value through the field.<br />
             <h4>Fig.1 Model 1 <span><br />Imitation of Turing's classic model performed by <i>E. coli</i> and AHL</span></h4>
+
            2. When diffusion introduced, the system became bistable; the concentrations of two substances oscillate between two values.
 +
          </p>
 +
          <p>
 +
            These conditions were derived from the mathematical modeling of the mechanism, and the detail is shown in the part of <a href='https://2015.igem.org/Team:UT-Tokyo/Modeling'>Modeling</a>.
 +
          </p>
 +
          <p>
 +
          We established a strategy which satisfies the two conditions for pattern formation using mathematical modeling.
 +
          </p>
 +
           <h3>Basic Strategy</h3>
 +
             <p>The first one is based on Turing’s classic model.(Figure1)</p>
 +
             <img src='https://static.igem.org/mediawiki/2015/e/ef/UT_TOKYO_Fig_Nkj-15.png' class='figure' style='max-height:300px'/>
 +
             <h4>Fig.1 Model 1 <span><br />Imitation of Turing's classic model performed by <i>Escherichia coli</i> and AHL.</span></h4>
 
             <p>
 
             <p>
             Here, we consider the “reaction” between <i>E. coli</i> and <span>AHL.
+
             Here, we consider the “reaction” between <i>E. Coli</i> and <span>AHL.
 
             <q>
 
             <q>
               AHL is a type of intercellular signaling molecule that can promote transcription from specific promoter when its concentration in a cell gets higher than certain threshold.
+
               AHL is a type of intercellular signaling molecule that can promote transcription from specific promoter when its concentration in a cell gets higher than a certain threshold.
               This system is called ”Quorum Sensing”. And here, AHL is set to induce protein which inhibits the multiplication of <i>E. coli</i>.
+
               This system is called ”Quorum Sensing”. And here, AHL is set to induce protein which inhibits the multiplication of <i>E. Coli</i>.
 
             </q></span>
 
             </q></span>
 
             </p>
 
             </p>
 
             <p>
 
             <p>
               <i>E. coli</i> produces(activates) AHL, and AHL inhibits the increase of <i>E. coli</i> indirectly. <i>E. coli</i> also multiples itself.
+
               <i>E. coli</i> produces AHL, and AHL inhibits the increase of <i>E. coli</i>. <i>E. coli</i> also reproduces.
 
             </p>
 
             </p>
 
             <p>
 
             <p>
               Diffusion rate of AHL is fast because its size is quite small. On the other hand, the rate of <i>E. coli</i> should be low considering Turing’s model,
+
               Diffusion rate of AHL is large because its size and molecular weight are quite small. On the other hand, the rate of <I>E. coli</i> should be low in order to form Turing pattern.
               and to achieve this, we modified <i>E. coli</i> by knocking out certain gene concerned with its motility.
+
               To achieve this, we modified <i>E. coli</i> by knocking out certain gene concerned with its motility.
 
             </p>
 
             </p>
 
             <p>
 
             <p>
               So, the control loop 1 (Figure1-1) functions as lateral inhibition, and the control loop 2 (Figure1-2) functions as local activation.
+
               This model can be divided into two sections, and here, let's call them control loop 1, and control loop 2.
 
             </p>
 
             </p>
            <img src='./images/project/project-4.png' class='figure' />
 
            <h4>Fig.1-1 Control loop 1<span><br />This loop is long-range negative feedback, and it drives lateral inhibition when the concentration of <i>E. coli</i> gets higher.</span></h4>
 
            <img src='./images/project/project-5.png' class='figure' />
 
            <h4>Fig.1-2 Control loop 2<span><br />This loop is short-range positive feedback, and it drives local activation when the concentration of <i>E. coli</i> gets higher.</span></h4>
 
 
             <p>
 
             <p>
               But this model has one potential defect: the order of the growth rate of <i>E. coli</i> is expected to be expressed as linear of the concentration of <i>E. coli</i>,
+
               Figure 1-1 shows the control loop 1. This loop is negative feedback, and when the concentration of E.coli increases in a certain position, the concentration of AHL also increases around there.
               and primary order multiplication may be too small as autocatalysis(local activation) in Turing’s model.
+
               Then AHL diffuses fast, inhibits the multiplication of E.coli in some long distance from the position. This kind of control loop is called long-range negative feedback loop.
 
             </p>
 
             </p>
 +
            <img src='https://static.igem.org/mediawiki/2015/e/e9/UT_TOKYO_Fig_Nkj-16.png' class='figure' style='max-height:300px;' />
 +
            <h4>Fig.1-1 Control loop 1<span><br />This loop is <b>long-range negative feedback</b>, and it drives lateral inhibition when the concentration of <i>E. Coli</i> gets higher.</span></h4>
 
             <p>
 
             <p>
               To solve this problem, we introduces another type of <i>E. coli</i> as co-activator, and that is the second strategy. (Figure2)
+
              Figure 1-2 shows the control loop 2. <i>E. coli</i> repruduces, so this loop can be considered as positive feedback. In addition, <i>E. coli</i> reproduces near of its position, for the diffusion rate of <i>E. coli</i> is small.
 +
              This kind of control loop is called short-range positive feedback loop.
 +
            </p>
 +
            <img src='https://static.igem.org/mediawiki/2015/a/ae/UT_TOKYO_Fig_Nkj-17.png' class='figure' style='max-height:300px;' />
 +
            <h4>Fig.1-2 Control loop 2<span><br />This loop is <p>short-range positive feedback</p>, and it drives local activation when the concentration of <i>E. Coli</i> gets higher.</span></h4>
 +
            <p>
 +
              We conducted  mathematical modeling of this system to see whether this system generates patterns we expected. However, it revealed that this system may not satisfy the condition 2 explained on the top of this part.
 +
            </p>
 +
            <p>
 +
              <input type="checkbox"  name="q2" checked="checked" disabled="disabled">
 +
              1. When the diffusion effect is negligible, the system is monostable; the concentrations of two factors take a constant value through the field.
 +
              <br />
 +
              <input type="checkbox"  name="q2" disabled="disabled">
 +
              2. When the diffusion effect is considerable, the system became bistable; the concentrations of two factors take either of two values according to the position on the field.
 +
            </p>
 +
            <h5>
 +
              Note that mathematical modeling is just a model and does not completely reflect the reality, so this result does not rule out the possibility that this system forms patterns.
 +
            </h5>
 +
            <p>
 +
              Analyzing the condition 2 mathematically, it turns out that this system has one potential defect: the order of the growth rate of <i>E. coli</i> is expected to be expressed to depend  linearly on the concentration of <i>E. coli</i>, resulting in primary order multiplication whereas greater changes of the increase rate is required in Turing’s model.
 +
              In other words, there has to be concentration difference of <i>E. coli</i> depending on the position on the field.
 +
            <p>
 +
               To solve this problem, we introduced a mutual inhibition by adding another type of <i>E. coli</i> as co-activator.
 
             </p>
 
             </p>
 
             <br />
 
             <br />
             <h3>Strategy 2</h3>
+
             <h3>Improved Strategy</h3>
             <img src='./images/project/project-6.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/7/75/UT_TOKYO_Fig_Nkj-18.png' class='figure' style='max-height:300px;' />
             <h4>Fig.2 Model 2<span><br />Improved model from Model 1</span></h4>
+
             <h4>Fig.2 Model 2:<span><br />Improved model from Model 1</span></h4>
 
             <p>
 
             <p>
               <i>E. coli</i>(activator) activates AHL, and AHL inhibits <i>E. coli</i>, as in the model in Figure 1. This loop functions as lateral inhibition. (Figure2-1)
+
               <i>E. Coli</i>(activator) activates AHL, and AHL inhibits <i>E. Coli</i>, as in the model in Figure 1. This loop functions as lateral inhibition.(Figure2-1)
 
             </p>
 
             </p>
             <img src='./images/project/project-4.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/e/e9/UT_TOKYO_Fig_Nkj-16.png' class='figure' style='max-height:300px;' />
 
             <h4>Fig.2-1 Long-range negative feedback loop<span><br />Same loop as in Figure 1-1</span></h4>
 
             <h4>Fig.2-1 Long-range negative feedback loop<span><br />Same loop as in Figure 1-1</span></h4>
 
             <p>
 
             <p>
               Two types of <i>E. coli</i> (activator and co-activator) inhibits each other(Figure2-2), and this interaction is achieved by the function of the protein called Colicin.
+
               In order to make a spacial difference of the concentration of activator, another type of E. coli (co-activator) is added to Basic Strategy.
              (The detail is shown in the chapter of System.)
+
              <br />Two types of <i>E. Coli</i> (activator and co-activator) inhibit each other(Figure2-2), and this interaction is achieved by the function of the protein called Colicin and growth competition. (The detail is shown in the chapter of System.)
 
             </p>
 
             </p>
             <img src='./images/project/project-7.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/2/2c/UT_TOKYO_Fig_Nkj-19.png' class='figure' style='max-height:300px;' />
 
             <h4>Fig.2-2 Short-range positive feedback loop<span><br />Mutual inhibition forms positive feedback. And the slow diffusion rate of the agent substance(Colicin) makes the range of this loop short.</span></h4>
 
             <h4>Fig.2-2 Short-range positive feedback loop<span><br />Mutual inhibition forms positive feedback. And the slow diffusion rate of the agent substance(Colicin) makes the range of this loop short.</span></h4>
 
             <p>
 
             <p>
               In this loop, the increase of $u$ causes the decrease of $v$, and the decrease of $v$ causes the increase of $u$ in turn. And the diffusion rate of Colicin is small for its big size<a href='#reference'>[6]</a>.
+
               Co-activator produces Colicin, which represses the growth of activator. The growth rate of co-activator is modulated to be lower than that of activator. Therefore, if co-activator does not produce Colicin, activator can survive and grow, but co-activator cannot because it loses growth competition. The growth competition is caused by the scramble for nutrients and space to grow. This means that activator can be assumed to have an inhibitory effect on co-activator.
               Therefore, we can regard it as local activation.
+
               As a result, a mutual inhibition is formed between activator and co-activator.
 
             </p>
 
             </p>
            <br />
 
            <h3>Strategy 3</h3>
 
 
             <p>
 
             <p>
               The third strategy is inspired by the pattern formation mechanism of zebrafish<a href='#reference'>[3]</a>. (Figure 3)
+
               In this interaction, the increase of activator causes the decrease of co-activator, and the decrease of co-activator causes the increase of activator in turn.
 +
              The diffusion rate of Colicin is small, for its size and molecular weight are large <a href='#reference'>[5]</a>. Therefore, we can regard it as short-range positive feedback loop.
 
             </p>
 
             </p>
            <img src='./images/project/project-8.png' class='figure' />
 
            <h4>Fig.3 Model 3<span><br />Two types of <i>E. coli</i> play the role of activator and inhibitor.</span></h4>
 
 
             <p>
 
             <p>
               In Figure 3, two types of <i>E. coli</i>(activator and inhibitor) reacts each other in two manners according to the distance between them.
+
               The growth rate induced by this positive feedback is much higher than that of self-multiplication of the model in the Basic Strategy, so concentration difference of <i>E. coli</i> can be made.
 
             </p>
 
             </p>
 
             <p>
 
             <p>
               When <i>E. coli</i>(activator) and <i>E. coli</i>(inhibitor) are close, they inhibit each other in the same way of strategy 2. (Figure 3-1) This control loop functions as local activation.
+
               Also, Mathematical modeling shows that this system can satisfy the two conditions.
 
             </p>
 
             </p>
            <img src='./images/project/project-9.png' class='figure' />
 
            <h4>Fig.3-1 Short-range positive feedback loop<span><br />Same loop as in Figure 2-2</span></h4>
 
 
             <p>
 
             <p>
              In addition, <i>E. coli</i>(activator) activates <i>E. coli</i>(inhibitor) through AHL in long distance(detailed scheme is explained in the chapter of System).
+
              <input type="checkbox"  name="q2" checked="checked" disabled="disabled">
              The control loop composed of this activation and the short-range inhibition of <i>E. coli</i>(activator) by activated <i>E. coli</i>(inhibitor) functions as lateral inhibition. (Figure3-2)
+
              1. When the diffusion effect is negligible, the system is monostable; the concentrations of two factors take a constant value through the field.
 +
              <br />
 +
              <input type="checkbox"  name="q2" checked="checked" disabled="disabled">
 +
              2. When the diffusion effect is considerable, the system became bistable; the concentrations of two factors take either of two values according to the position on the field.
 
             </p>
 
             </p>
             <img src='./images/project/project-10.png' class='figure' />
+
             <br />
            <h4>Fig.3-2 Long-range positive feedback loop<span><br />"Activator" <i>E. coli</i> promotes the multiplication of "Inhibitor" <i>E. coli</i>, and "Inhibitor" inhibits the multiplication of "Activator" near of "Inhibitor"</span></h4>
+
 
         </div>
 
         </div>
  
Line 130: Line 181:
 
           <h2>SYSTEM</h2>
 
           <h2>SYSTEM</h2>
 
           <p>
 
           <p>
             In this chapter, we give concrete constructions for the concepts explained at Strategy. First, we explain basic mechanisms which are necessary to understand our construction.
+
             In this chapter, we give concrete constructions for the concepts explained at Strategy. First,
 +
            we explain basic mechanisms which are necessary to understand our construction.
 
           </p>
 
           </p>
 +
          <br />
 
           <h3>1. Motility control</h3>
 
           <h3>1. Motility control</h3>
           <h5>
+
           <p>
 
             1.1 CheZ
 
             1.1 CheZ
           </h5>
+
           </p>
 +
          <p>
 +
            By regulating the diffusion rate, we can control what pattern is generated.The motility of <i>E. coli</i> is regulated by CheZ. When CheZ is expressed, <i>E. coli</i> swims straight and the diffusion rate is high. When CheZ is not expressed, <i>E. coli</i> tumbles and the diffusion rate is low (Fig. 1.1).
 +
            <br /> In our project, we used <i>cheZ</i> knock out strain (JW1870), and controlled the diffusion rate of <i>E. coli</i> by transffering <i>cheZ</i>.
 +
          </p>
 
           <div class='table'>
 
           <div class='table'>
             <img src='./images/project/project-111.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/4/43/UT_TOKYO_Fig_Ym-1.png' class='figure' />
             <img src='./images/project/project-112.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/a/a2/UT_TOKYO_Fig_Ym-2.png' class='figure' />
 
           </div>
 
           </div>
 
           <h4>Fig.1-1 Swimming phase and tumbling phase<span>
 
           <h4>Fig.1-1 Swimming phase and tumbling phase<span>
Line 146: Line 203:
 
           </span></h4>
 
           </span></h4>
 
           <p>
 
           <p>
             The movement of <i>E. coli</i> is roughly divided in two phases, swimming(a) and tumbling(b). In order to convert these phases,
+
             The movement of <i>E. Coli</i> is roughly divided in two phases, swimming(a) and tumbling(b). In order to convert these phases,
             <i>E. coli</i> use flagellar binding protein called CheY which is controlled by CheZ. Under the expression of CheZ,
+
             <i>E. Coli</i> use flagellar binding protein called CheY which is controlled by CheZ. Under the expression of CheZ,
 
             CheY is dephosphorylated by CheZ and inactivated to bind to the flagellar mortar proteins. Consequently, the rotation of flagellar is changed and cell initiates swimming phase.<a href='#reference'>[7]</a>
 
             CheY is dephosphorylated by CheZ and inactivated to bind to the flagellar mortar proteins. Consequently, the rotation of flagellar is changed and cell initiates swimming phase.<a href='#reference'>[7]</a>
 
             <br />
 
             <br />
 
             In our project, we use cheZ knock out strain (JW18XX), and transfer cheZ under inducible promoter to control cell motility.
 
             In our project, we use cheZ knock out strain (JW18XX), and transfer cheZ under inducible promoter to control cell motility.
 
           </p>
 
           </p>
           <br />
+
           <h4><a onclick = "openDetail(1)">Detail Explanation</a></h4>
          <h3>2. Cell – Cell interaction</h3>
+
           <div id = "detail1" style = "display:none;">
          <h5>
+
           <p> The movement of E. coli is roughly divided in two phases, swimming(a) and tumbling(b). In order to convert these phases,
            2.1 Quorum Sensing
+
             E. coli use flagellar binding protein called CheY which is controlled by CheZ. Under the expression of CheZ,
           </h5>
+
             CheY is dephosphorylated by CheZ and inactivated to bind to the flagellar motor proteins. Consequently, the rotation of flagellar is changed and cell initiates swimming phase.<a href='#reference'>[1]</a> </p>
           <div class='table'>
+
             <img src='./images/project/project-121.png' class='figure' />
+
             <img src='./images/project/project-122.png' class='figure' />
+
 
           </div>
 
           </div>
          <h4>Fig.2-1 Quorum sensing<span><br />Blue hexagon shows AHL molecule. When population density gets higher than certain threshold, the transcription from specific promoter (such as Plux) is enhanced.</span></h4>
 
          <p>
 
            AHLs are signal molecules involved in bacterial quorum sensing (Fig 2.1). AHL can easily permeate cell membranes and can regulate the transcription of target cell.
 
            For example, in Lux system, AHL binds to LuxR dimer and that complex enhances transcription from PRlux promoter.
 
          </p>
 
 
           <br />
 
           <br />
           <h5>
+
           <h3>2. Cell-Cell interaction</h3>
            2.2 Colicin
+
          </h5>
+
          <img src='./images/project/project-13.png' class='figure' />
+
          <h4>Fig.2-2 Mechanism of Colicin release<span><br />This figure may a littel bit differ from actual mechanism.</span></h4>
+
 
           <p>
 
           <p>
             Colicin E3 (ColE3) is a ribonuclease. Colicin E3 Immunity protein (ColI) binds to ColE3 and neutralize it.
+
             We can also control what pattern is generated by regulating the growth rate of <i>E. coli</i>. We planned to regulate the rate using cell-cell interactions.
            Colicin Lysis protein (ColL) allow ColE3 to pass thorugh cell membrane. The mechanism of colicin release has not been elucidated.<a href='#reference'>[8]</a><a href='#reference'>[9]</a>
+
            <br />
+
            Colicins are a cytotoxins which are released to environment and kill other related strains.
+
            Release of colicin involves one protein; Colicin Lysis Protein (ColL). Colicin lysis protein allows colicins to be released.
+
            The mechanism how the colicin lysis protein allows colicin release has not been fully elucidated, but it is sure that this protein raise membrane permiability and cause quasilysis.<a href='#reference'>[8]</a>
+
            After Colicin released, they diffuse through the medium and bind to the receptor on the target cell membrane. Then,
+
            they are imported to the cytoplasm or cytoplasmic membrane of target cell by Tol-system or Ton-system. (If you want to know the mechanism of the Colicin import, see <a href='#reference'>[8]</a>)
+
            <br />
+
            Colicin producing cells also express Colicin Immunity Protein (ColI) in order to protect themselves from cytotoxity of colicin.
+
            <br />
+
            Colicins have variety cytotoxity such as DNase activity, RNase activity or Pore forming across inner membrane.
+
            <br />
+
            In our project, we select colicin E3 because it has low risk of safety problems. Colicin E3 specifically digests 16S rRNA which is only in bacteria.
+
 
           </p>
 
           </p>
          </p>
 
          <br />
 
          <h3>3. Construction</h3>
 
          <h5>Strategy 1</h5>
 
            <img src='./images/project/project-14.png' class='figure' />
 
          <h4>Fig.3-1 Construction for Strategy 1<span><br />Positive feed back loop, which is necessary for local activation, is played by multiplication of <i>E. coli.</i></span></h4>
 
 
           <p>
 
           <p>
             Gene modified <i>E. coli</i> is an activator, and AHL is an inhibitor.<br />
+
             2.1 AHL
            Local activation is played by self-reproducing of <i>E. coli</i>. <br />
+
            Lateral inhibition is played by AHL. AHL activates the expression of Barnase (RNase Ba) which causes <i>E. coli</i> to die. Barnase is the RNase from <i>Bacillus amyloliquefaciens.</i><br />
+
            Since gene modified <i>E. coli</i> is <i>cheZ</i> knock out strain, the difference between the diffusion rate of <i>E. coli</i> and that of AHL is enough to create Turing Pattern. <br />
+
 
           </p>
 
           </p>
          <h5>Strategy 2</h5>
 
          <img src='./images/project/project-15.png' class='figure' />
 
          <h4>Fig.3-2 Construction for Strategy 2<span><br />Inhibit means growth competiton. When colicin sensitive cells (in this figure, activator) grow faster than
 
            colicin producing cells(co-activator) and initial concentration of activator is higher than a certain threshold, colicin sensitive cells continue to increase and colicin producing cells die.<a href='#reference'>[10]</a></h4>
 
          <p>
 
            In order to strengthen positive feedback of local activation, another type of <i>E. coli</i> (co-activator) is added to Strategy 1. Lateral inhibition is played by AHL.<br />
 
            Co-activator produces colicin, which represses the growth of activator. Note that the growth rate of co-activator is modulated to be lower than that of activator.
 
            As a result, they compete and repress each other.<a href='#reference'>[10]</a> This feedback loop acts local activation and helps pattern formation.
 
          </p>
 
          <h5>Strategy 3</h5>
 
          <img src='./images/project/project-16.png' class='figure' />
 
          <h4>Fig.3-3 Construction for Strategy 3</h4>
 
          <p>
 
            Two types of <i>E. coli</i> play activator and inhibitor.<br />
 
            Local activation is same system as Strategy 2. Activator and inhibitor repress each other in short range.<br />
 
            Lateral inhibition is played by AHL and inhibitor cell. AHL is produced by activator cell and enhances the expression of Barstar, Barnase immunity protein, in inhibitor cell.
 
            Thus, the Barnase is inactivated and the growth rate of inhibitor cell is recovered. As a result, inhibitor cell represses activator cell by growth competition.
 
          </p>
 
          <br />
 
          <h3>4. Assay</h3>
 
 
           <div class='table'>
 
           <div class='table'>
             <img src='./images/project/project-171.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/2/28/UT_TOKYO_Fig_Ym-4.png' class='figure' />
             <img src='./images/project/project-172.png' class='figure' />
+
             <img src='https://static.igem.org/mediawiki/2015/e/e6/UT_TOKYO_Fig_Ym-3.png' class='figure' />
 
           </div>
 
           </div>
           <div class='table'>
+
           <h4>Fig.2-1 Quorum sensing<span><br />Blue hexagon shows AHL molecule. When population density gets higher than certain treshold, the transcription from specific promoter(such as Plux) is enhanced.</span></h4>
            <img src='./images/project/project-173.png' class='figure' />
+
            <img src='./images/project/project-174.png' class='figure' />
+
          </div>
+
          <h4>Fig.4-1 Pattern formation assay</h4>
+
 
           <p>
 
           <p>
             We observed the pattern on semi-agarose gel. Concentration of agarose is low(0.15%), so that <i>E. coli</i can diffuse in gel. If you want to know detail, see Experiments page.
+
             One of the cell-cell interactions is played by AHL.<br />
          </p>
+
             AHLs are signal molecules involved in bacterial quorum sensing (Fig 2.1). AHL can easily permeate cell membranes and can regulate the transcription of target cell. For example, in Lux system,
        </div>
+
             AHL binds to LuxR dimer and that complex enhances transcription from PRlux promoter.
 
+
        <div class='panel' id='result'>
+
          <h2>RESULT</h2>
+
          <h3>今後一か月の実験の中で出すべき結果(想定)を書く</h3>
+
          <h3>本来示すべきこと(理想)</h3>
+
          <ul>
+
             <li><p>SSA(semi solid agar)上での大腸菌とAHLの拡散速度測定</p></li>
+
            <li><p>大腸菌とAHLの初期濃度によってSSA上で大腸菌濃度が双安定状態をとること(拡散ありで平衡点が不安定)</p></li>
+
            <li><p>大腸菌とAHLを試験管に入れて大腸菌濃度が一定値に収束すること(拡散なしで平衡点が安定)</p></li>
+
          </ul>
+
          <h3>実際に示せそうなこと(想定) </h3>
+
          <h4>大腸菌とAHLの拡散係数</h4>
+
          <p>
+
            大腸菌:タイムラプスカメラでコロニーの拡大を撮影。コロニーの境界が動く速さを測定<br />
+
            AHL:pLux-gfp、pconst-luxRを持った大腸菌を一様に培養してあるプレートの中央にpconst-luxIを持った大腸菌を植菌し、GFPが発現している領域が拡大する様子を撮影。
+
適当に決めた蛍光強度の線が動く速さを測定(どの値を取るのが適切か要検討)<br />
+
            文献値を使ったシミュレーションと比較してfittingにより妥当な拡散係数を出す。<br />
+
            文献値を使ったシミュレーションと一致すれば、その値をそのまま使う。一致しなければ、値を調整して実験結果をよく説明する値を採用する。
+
          </p>
+
          <p>
+
            測定結果から拡散係数を直接導出する方法もないわけではない。<br />
+
            枯草菌のバクテリアコロニーを研究した論文。<br />
+
            コロニー内での個々のバクテリアの動きをビデオイメージによって時間的に追跡した。<br />
+
            バクテリア細胞が、ある点から出発して時間tの間に移動した直線距離Rを多数回観察し、平均値$&ltR^2>$を測定。<br />
+
            バクテリアの動きをブラウン運動だと仮定してアインシュタインの関係式<br />
+
            $&ltR^2> = 2D*t $ (Dは拡散係数)<br />
+
            に計測値を代入して実効的な拡散係数を導出している。<br />
+
            <a href='https://drive.google.com/file/d/0B8LFc7zIyljoSHVaTU5zSmVGQkE/view'>Experimental Investigation on the Validity of Population Dynamics Approach to Bacterial Colony Formation</a><br />
+
             wikipediaにアインシュタインの関係式の説明がある<br />
+
            <a href='https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%82%A6%E3%83%B3%E9%81%8B%E5%8B%95'>Einstein Relation</a><br />
+
            ただし、拡散係数が何に依存するかを考察し、適切な近似をすることは必要。<br />
+
            例:濃度依存、温度依存等、すべて考慮すると導出できなくなるので近似をする。
+
 
           </p>
 
           </p>
 
           <br />
 
           <br />
          <h4>collicinで大腸菌が死ぬこと</h4>
 
 
           <p>
 
           <p>
             試験管でplac-collicinを持った大腸菌を培養しIPTG誘導かけて死ぬかをOD測定で見る。
+
             2.2 Colicin
 
           </p>
 
           </p>
           <br />
+
           <img src='https://static.igem.org/mediawiki/2015/a/a8/UT_TOKYO_Fig_Ym-8.png' class='figure' style='max-height:300px;' />
           <h4>Luxシステムの機能</h4>
+
           <h4>Fig.2-2 Mechanism of Colicin release<span><br />※This figure may a littel bit differ from actual mechanism.</span></h4>
 
           <p>
 
           <p>
             pLux-gfp、pconst-luxRを持った大腸菌を試験管で培養し、AHLを濃度振って誘導し、蛍光強度を見る。<br />
+
             Colicin E3 (ColE3) cleaves 16SrRNA at a specific site. Colicin E3 Immunity protein (ColI) binds to ColE3 and neutralizes it. Colicin Lysis protein (ColL) allows ColE3 to pass thorugh the cell membrane.
            luxIを含んだ全体のシステムの確認はAHLの拡散係数測定で同時に行うことにする。
+
            The mechanism of colicin release has not been elucidated.<a href='#reference'>[7]</a><a href='#reference'>[8]</a>
 
           </p>
 
           </p>
          <br />
 
          <h4>Strategy 2の平衡点安定性アッセイ</h4>
 
 
           <p>
 
           <p>
             strategy 2の二種類の大腸菌をSSA上で培養、培養容器の大きさを変えて、拡散の効果が出てくる大きさを見つける。<br />
+
             The another cell-cell interaction is played by Colicin.<br />
             容器が小さすぎると一瞬でAHLが拡散して大腸菌の成長が容器全体で抑制された結果、大腸菌密度は容器内で一様になるはず。<br />
+
             Colicin E3 is a cytotoxin which are released to environment and kill other related strains.  It requires Colicin Lysis protein (ColL) to pass through the cell membrane.
            容器が大きければ、AHLの拡散によって容器中央はAHL濃度が低く、外縁はAHL濃度が高くなり、容器中央に大腸菌のスポットができるはず。<br />
+
             Colicin Immunity protein (ColI) neutralizes the cytotoxicity of Colicin E3.
            拡散係数測定のアッセイで出した拡散係数を使ったモデリングと結果を比較する(一致していてほしい)。<br />
+
             一点のスポットのみのチューリングパターン。スポット間の相互作用によるスポット間の位置調整(周期的パターンにつながる)は見られない。
+
 
           </p>
 
           </p>
 
           <br />
 
           <br />
           <h4>大腸菌-AHLをSSAに播いてみた結果</h4>
+
           <h4><a onclick = "openDetail(2)">Detail Explanation</a></h4>
          <br />
+
           <div id = "detail2" style = "display:none;">
          <h4>strategy 3は未定。barstarアッセイ(plac-barstar、pconst-barnaseでIPTG誘導OD測定?)</h4>
+
           <hr>
+
          <h3>The experiments results we are planning to show are...</h3>
+
          <h4>The diffusion rates of E.coli and AHL</h4>
+
 
           <p>
 
           <p>
             E.coli<br />
+
             Colicin is a cytotoxin which is released to the environment and kills other related strains.
             Take pictures of a colony at regular intervals using a time-lapse camera and measure the expansion speed of the colony.
+
 
 +
             Release of colicin involves one protein; Colicin Lysis Protein (ColL). Colicin lysis protein allows colicins to be released. The mechanism how the colicin lysis protein allows colicin release has not been fully elucidated, but it is sure that this protein raise membrane permeability and cause quasilysis.<a href='#reference'>[2]</a> After Colicin released, they diffuse through the medium and bind to the receptor on the target cell membrane. Then, they are imported to the cytoplasm or cytoplasmic membrane of target cell by Tol-system or Ton-system. (If you want to know the mechanism of the Colicin import, see <a href='#reference'>[2]</a>)
 +
            Colicin producing cells also express Colicin Immunity Protein (ColI) in order to protect themselves from the cytotoxicity of Colicin.
 +
 
 +
            Colicins have various cytotoxicity such as DNase activity, RNase activity or Pore forming across the inner membrane.
 +
 
 +
            In our project, we select colicin E3 because it has low risk of safety problems. Colicin E3 specifically digests 16S rRNA which is only in bacteria.
 
           </p>
 
           </p>
 +
          </div>
 +
          <h3>3. Detailed overall system</h3>
 +
          <p>Basic Strategy</p>
 +
            <img src='./images/project/project-14.png' class='figure' style='max-height:300px;' />
 +
          <h4>Fig.3-1 Construction for Basic Strategy<span><br />Positive feed back loop, which is necessary for local activation, is played by multiplication of <i>E. coli</i>.</span></h4>
 
           <p>
 
           <p>
             AHL<br />
+
             Gene modified <i>E. Coli</i> is an activator, and AHL is an inhibitor.<br />
             Culture E.coli with pLux-gfp and pconst-luxR circuit homogeneously on semi solid agar and inoculate another E.coli with pconst-luxI circuit on the center of a plate.
+
             Local activation is played by self-reproducing of <i>E. Coli</i>. <br />
             Take pictures of the colony under exciting light with a time-lapse camera and measure the expansion speed of the fluorescent area, where E.coli receives AHL and expresses GFP.
+
            Lateral inhibition is played by AHL. AHL activates the expression of Barnase (RNase Ba) which causes <i>E. Coli</i> to die. Barnase is the RNase from <i>Bacillus amyloliquefaciens</i>. <br />
          </p>
+
             Since gene modified <i>E. Coli</i> is cheZ knock out strain, the difference between the diffusion rate of <i>E. Coli</i> and that of AHL is enough to generate Turing Pattern.
 +
            However, as mentioned in Strategy section, this system may not generate Turing Pattern because the strength of the positive feedback of activator may not enough. Therefore, we improved this strategy by adding co-activator.<br />
 +
        </p>
 
           <p>
 
           <p>
             Compare the results of the experiments and the computer simulation, and find the diffusion rates which fits the experiments results.
+
             Improved Strategy
 
           </p>
 
           </p>
           <br />
+
           <img src='' class='figure' style='max-height:300px;'>
           <h4>The cytotoxicity of collicin</h4>
+
           <h4>Fig 3.2 Construction for Improved Strategy</h4>
 
           <p>
 
           <p>
             Culture E.coli with plac-collicin circuit in a tube, induce IPTG and compare OD before the induction and after the induction.
+
             The inhibitory effect on co-activator from activator is caused by growth competition. When colicin sensitive cells, activator,  grow faster than colicin producing cells, co-activator, and the initial concentration of activator is higher than a certain threshold,
          </p>
+
             colicin sensitive cells continue to increase and colicin producing cells die<a href='#reference'>[9]</a>.
          <br />
+
          <h4>The function of lux system</h4>
+
          <p>
+
             Culture E.coli with pLux-gfp and pconst-luxR circuit, induce AHL and measure the fluorescence.<br />
+
            Confirmation of the function of the whole lux system(including luxI) is included in the diffusion rates assay of AHL.
+
          </p>
+
          <br />
+
          <h4>Strategy 2: Equibrium point stability assay</h4>
+
          <p>
+
            Culture two types of E.coli in strategy 2 in a plate. Change the size of a plate and find the size at which the diffusion become effectual. (Check)
+
 
           </p>
 
           </p>
 +
        </div>
 +
 +
        <div class='panel' id='result'>
 +
          <h2>RESULT</h2>
 +
          <h3>Motility Control</h3>
 +
            <p>
 +
              Diffusion rate of <i>E.coli</i> is one of the key factors for the control of pattern formation. As mentioned in system section, diffusion rate can be changed by the strength of CheZ gene expression. We constructed several CheZ generators which express different amount of CheZ gene and tryed to measure the diffusion rate. The picture below shows the appearance of
 +
              <i>E.coli</i> diffusing in semi solid agar which is prepared to be very soft (0.15%) for observing <i>E.coli</i>diffusion.
 +
            </p>
 +
            <img src='内部wikiにgdのアドレスが' class='figure'>
 +
             <h4></h4>
 +
            <img src='貼ってありました' class='figure'>
 +
              <h4></h4>
 +
            <img src='二度手間でごめんなさい' class='figure'>
 +
              <h4></h4>
 
         </div>
 
         </div>
  
Line 326: Line 302:
 
           <h2>APPLICATION</h2>
 
           <h2>APPLICATION</h2>
 
           <p>
 
           <p>
 +
            Our project gives data for two dimension dynamics of a specific network among cells. This data can help study of tissue formation, which is a pattern formation in three dimension.
 +
            For a scaffold of pattern formation in three dimension, you can use 3D hydrogel instead of semi solid agar on a plate (Fig. 1)<a href='#reference'>[10]</a>.
 
           </p>
 
           </p>
 +
          <img src='' class='figure' />
 +
          <h4>Fig. 1 Tissue formation by self-organization.
 +
            <span><br />y interactions between cells in 3D hydrogel, a tissue may be formed. This figure is cited from the previous study<a href='#reference'>[10]</a>.</span></h4>
 
         </div>
 
         </div>
  
Line 335: Line 316:
 
           <p>[3]Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.
 
           <p>[3]Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.
 
             Proceedings of the National Academy of Sciences, 106(21), 8429-8434.</p>
 
             Proceedings of the National Academy of Sciences, 106(21), 8429-8434.</p>
           <p>[4]Prum, R. O., & Williamson, S. (2002). Reaction–diffusion models of within-feather pigmentation patterning. Proceedings of the Royal Society of London B: Biological Sciences, 269(1493), 781-792.</p>
+
           <p>[4]Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. Bioessays, 22(8), 753-760.</p>
          <p>[5]Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. Bioessays, 22(8), 753-760.</p>
+
           <p>[5]Cascales, E. et al. (2007) Colicin Biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.</p>
           <p>[6]Cascales, E. et al. (2007) Colicin Biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.</p>
+
           <p>[6]Parkinson, J. S. (2003). Bacterial chemotaxis: a new player in response regulator dephosphorylation. Journal of bacteriology, 185(5), 1492-1494..</p>
           <p>[7]Parkinson, J. S. (2003). Bacterial chemotaxis: a new player in response regulator dephosphorylation. Journal of bacteriology, 185(5), 1492-1494.</p>
+
           <p>[7]Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., ... & Cavard, D. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.</p>
           <p>[8]Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., ... & Cavard, D. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.</p>
+
           <p>[8]Lloubes, R., Bernadac, A., Houot, L., & Pommier, S. (2013). Non classical secretion systems. Research in microbiology, 164(6), 655-663.</p>
           <p>[9]Lloubes, R., Bernadac, A., Houot, L., & Pommier, S. (2013). Non classical secretion systems. Research in microbiology, 164(6), 655-663.</p>
+
           <p>[9]Chao, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.</p>
           <p>[10]Chao, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.</p>
+
          <p>[10]Chen, T. H. (2014). Tissue Regeneration: From Synthetic Scaffolds to Self-Organizing Morphogenesis. Current stem cell research & therapy, 9(5), 432-443.</p>
 
         </div>
 
         </div>
 
 
         <div class='posnav' id='breadcrumbs-one'></div>
 
         <div class='posnav' id='breadcrumbs-one'></div>
 +
</html>
 +
{{UT-Tokyo/Footer}}
 +
<html>
 
       </div>
 
       </div>
 +
 +
    </body>
 
<script type="text/javascript" src="https://2015.igem.org/Template:UT-Tokyo/Javascript/main?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2015.igem.org/Template:UT-Tokyo/Javascript/main?action=raw&ctype=text/javascript"></script>
 
</html>
 
</html>

Revision as of 00:04, 19 September 2015

INTRODUCTION

Project Overview

Mechanisms for development of living things have been investigated for a long time. In 1952, Alan Turing made a key contribution. He showed that the interaction of two substances with different diffusion rates can generate spatial patterns of the concentration, which are called Turing Patterns, without any preformed pattern[1]. This pattern can be a base for development. The idea has been applied to explain periodical patterns such as hair follicle distribution of mice[2], stripe formation on zebrafish[3].

Here, we tried to reconstruct Turing Pattern by Escherichia coli in a way of synthetic biology to understand the mechanism more. E. coli has cell-cell communication system called quorum sensing. Utilizing this system, we aimed to generate a periodical colony pattern. This project leads to further understanding of Turing Pattern, especially characteristics of Turing Pattern generated by genetic circuits. It points the way to understanding of development of living things, thus can be applied to tissue formation.

Approach

Below is the flow of our project.

  1. 1. Develop a strategy for pattern formation using mathematical modeling.

  2. 2. Experimentally measure parameters to modify the model.

  3. 3. Fix experimental conditions according to modeling results.

  4. 4. Generate colony patterns and verify the model by comparing patterns.


Turing Mechanism

Turing Pattern is generated by the interaction of two substances with different diffusion rates. These substances are called activator and inhibitor. Activator promotes its own production and the production of inhibitor, and inhibitor inhibits the production of activator(Fig.1). Inhibitor diffuses faster than activator.

Fig.1 Turing mechanism The interaction of activator and inhibitor generates patterns.

Turing focused on the difference in the diffusion rates, but later Meinhardt and Gierer explained the mechanism from the point of local self-activation and lateral inhibition[4]. This explanation is easy to understand intuitively, so we will explain Turing pattern along this explanation.

Fig.2 The generation of a periodical pattern
The initial condition is (a), and as time passes, a periodical concentration pattern is generated((b)~(f)).

At first, there is no preformed pattern in the field and the concentrations of two substances are homogeneous through the field (Fig. 2 (a)). However, there can be a spot with a little bit high concentration of activator because of perturbation. At such a point, the concentration of activator becomes higher and higher, as well as that of inhibitor, by the function of activator (Fig. 2 (b)~(c)). This corresponds to local self-activation. Since inhibitor diffuses faster than activator, the concentration of inhibitor becomes relatively high around that point and that of activator becomes low because of the inhibitory effect of inhibitor there (Fig. 2 (d)~(e)). This corresponds to lateral inhibition. Therefore, a spot of activator is generated. This reaction occurs at different points in the field, and the distance between each spot is regulated by the interaction of the two substances (Fig. 2 (f)). In this way, a periodical pattern is generated in the field.


Advantage Of Synthetic Biological Approach

Pattens of living things have been investigated for a long time, but it was not easy to prove directly if these patterns are produced by the reaction-diffusion systems or another mechanism because living systems are so complex. Biologists still face a big problem: how activator and inhibitor interacts in vivo. We have little information about what interactions between them generate what patterns. If we can control the interactions, the relation between interactions and patterns can be revealed. We therefore reconstructed a Turing system using two advantages of synthetic biology; controllability and biological directness. We can change the diffusion rate of E. coli and the strength of inhibitory effects of inhibitor by inducing synthetic circuit, which can be a great advantage of the experimental system. Chemical system has a similar advantage, but it is far from living systems. For example, it does not include processes of transcription and translation, which is necessary for living things, through the interaction of two factors. Our system uses cells themselves for pattern formation, so it may be directly applied to developmental studies and point the way to tissue formation.

STRATEGY

As explained in the part of Introduction, the system of Turing pattern is based on the interaction between two factors; activator and inhibitor. To achieve the formation of Turing pattern, two conditions are required on this system.

1. When the diffusion effect is negligible, the system is monostable; the concentrations of two factors take a constant value through the field.
2. When diffusion introduced, the system became bistable; the concentrations of two substances oscillate between two values.

These conditions were derived from the mathematical modeling of the mechanism, and the detail is shown in the part of Modeling.

We established a strategy which satisfies the two conditions for pattern formation using mathematical modeling.

Basic Strategy

The first one is based on Turing’s classic model.(Figure1)

Fig.1 Model 1
Imitation of Turing's classic model performed by Escherichia coli and AHL.

Here, we consider the “reaction” between E. Coli and AHL. AHL is a type of intercellular signaling molecule that can promote transcription from specific promoter when its concentration in a cell gets higher than a certain threshold. This system is called ”Quorum Sensing”. And here, AHL is set to induce protein which inhibits the multiplication of E. Coli.

E. coli produces AHL, and AHL inhibits the increase of E. coli. E. coli also reproduces.

Diffusion rate of AHL is large because its size and molecular weight are quite small. On the other hand, the rate of E. coli should be low in order to form Turing pattern. To achieve this, we modified E. coli by knocking out certain gene concerned with its motility.

This model can be divided into two sections, and here, let's call them control loop 1, and control loop 2.

Figure 1-1 shows the control loop 1. This loop is negative feedback, and when the concentration of E.coli increases in a certain position, the concentration of AHL also increases around there. Then AHL diffuses fast, inhibits the multiplication of E.coli in some long distance from the position. This kind of control loop is called long-range negative feedback loop.

Fig.1-1 Control loop 1
This loop is long-range negative feedback, and it drives lateral inhibition when the concentration of E. Coli gets higher.

Figure 1-2 shows the control loop 2. E. coli repruduces, so this loop can be considered as positive feedback. In addition, E. coli reproduces near of its position, for the diffusion rate of E. coli is small. This kind of control loop is called short-range positive feedback loop.

Fig.1-2 Control loop 2
This loop is

short-range positive feedback

, and it drives local activation when the concentration of E. Coli gets higher.

We conducted mathematical modeling of this system to see whether this system generates patterns we expected. However, it revealed that this system may not satisfy the condition 2 explained on the top of this part.

1. When the diffusion effect is negligible, the system is monostable; the concentrations of two factors take a constant value through the field.
2. When the diffusion effect is considerable, the system became bistable; the concentrations of two factors take either of two values according to the position on the field.

Note that mathematical modeling is just a model and does not completely reflect the reality, so this result does not rule out the possibility that this system forms patterns.

Analyzing the condition 2 mathematically, it turns out that this system has one potential defect: the order of the growth rate of E. coli is expected to be expressed to depend linearly on the concentration of E. coli, resulting in primary order multiplication whereas greater changes of the increase rate is required in Turing’s model. In other words, there has to be concentration difference of E. coli depending on the position on the field.

To solve this problem, we introduced a mutual inhibition by adding another type of E. coli as co-activator.


Improved Strategy

Fig.2 Model 2:
Improved model from Model 1

E. Coli(activator) activates AHL, and AHL inhibits E. Coli, as in the model in Figure 1. This loop functions as lateral inhibition.(Figure2-1)

Fig.2-1 Long-range negative feedback loop
Same loop as in Figure 1-1

In order to make a spacial difference of the concentration of activator, another type of E. coli (co-activator) is added to Basic Strategy.
Two types of E. Coli (activator and co-activator) inhibit each other(Figure2-2), and this interaction is achieved by the function of the protein called Colicin and growth competition. (The detail is shown in the chapter of System.)

Fig.2-2 Short-range positive feedback loop
Mutual inhibition forms positive feedback. And the slow diffusion rate of the agent substance(Colicin) makes the range of this loop short.

Co-activator produces Colicin, which represses the growth of activator. The growth rate of co-activator is modulated to be lower than that of activator. Therefore, if co-activator does not produce Colicin, activator can survive and grow, but co-activator cannot because it loses growth competition. The growth competition is caused by the scramble for nutrients and space to grow. This means that activator can be assumed to have an inhibitory effect on co-activator. As a result, a mutual inhibition is formed between activator and co-activator.

In this interaction, the increase of activator causes the decrease of co-activator, and the decrease of co-activator causes the increase of activator in turn. The diffusion rate of Colicin is small, for its size and molecular weight are large [5]. Therefore, we can regard it as short-range positive feedback loop.

The growth rate induced by this positive feedback is much higher than that of self-multiplication of the model in the Basic Strategy, so concentration difference of E. coli can be made.

Also, Mathematical modeling shows that this system can satisfy the two conditions.

1. When the diffusion effect is negligible, the system is monostable; the concentrations of two factors take a constant value through the field.
2. When the diffusion effect is considerable, the system became bistable; the concentrations of two factors take either of two values according to the position on the field.


SYSTEM

In this chapter, we give concrete constructions for the concepts explained at Strategy. First, we explain basic mechanisms which are necessary to understand our construction.


1. Motility control

1.1 CheZ

By regulating the diffusion rate, we can control what pattern is generated.The motility of E. coli is regulated by CheZ. When CheZ is expressed, E. coli swims straight and the diffusion rate is high. When CheZ is not expressed, E. coli tumbles and the diffusion rate is low (Fig. 1.1).
In our project, we used cheZ knock out strain (JW1870), and controlled the diffusion rate of E. coli by transffering cheZ.

Fig.1-1 Swimming phase and tumbling phase
The motility of the cell is regulated by CheZ.
(a)Swimming phase: CheZ is expressed and inhibits CheY.
(b)Tumbling phase: CheY binds to flagellar binding proteins.

The movement of E. Coli is roughly divided in two phases, swimming(a) and tumbling(b). In order to convert these phases, E. Coli use flagellar binding protein called CheY which is controlled by CheZ. Under the expression of CheZ, CheY is dephosphorylated by CheZ and inactivated to bind to the flagellar mortar proteins. Consequently, the rotation of flagellar is changed and cell initiates swimming phase.[7]
In our project, we use cheZ knock out strain (JW18XX), and transfer cheZ under inducible promoter to control cell motility.

Detail Explanation


2. Cell-Cell interaction

We can also control what pattern is generated by regulating the growth rate of E. coli. We planned to regulate the rate using cell-cell interactions.

2.1 AHL

Fig.2-1 Quorum sensing
Blue hexagon shows AHL molecule. When population density gets higher than certain treshold, the transcription from specific promoter(such as Plux) is enhanced.

One of the cell-cell interactions is played by AHL.
AHLs are signal molecules involved in bacterial quorum sensing (Fig 2.1). AHL can easily permeate cell membranes and can regulate the transcription of target cell. For example, in Lux system, AHL binds to LuxR dimer and that complex enhances transcription from PRlux promoter.


2.2 Colicin

Fig.2-2 Mechanism of Colicin release
※This figure may a littel bit differ from actual mechanism.

Colicin E3 (ColE3) cleaves 16SrRNA at a specific site. Colicin E3 Immunity protein (ColI) binds to ColE3 and neutralizes it. Colicin Lysis protein (ColL) allows ColE3 to pass thorugh the cell membrane. The mechanism of colicin release has not been elucidated.[7][8]

The another cell-cell interaction is played by Colicin.
Colicin E3 is a cytotoxin which are released to environment and kill other related strains. It requires Colicin Lysis protein (ColL) to pass through the cell membrane. Colicin Immunity protein (ColI) neutralizes the cytotoxicity of Colicin E3.


Detail Explanation

3. Detailed overall system

Basic Strategy

Fig.3-1 Construction for Basic Strategy
Positive feed back loop, which is necessary for local activation, is played by multiplication of E. coli.

Gene modified E. Coli is an activator, and AHL is an inhibitor.
Local activation is played by self-reproducing of E. Coli.
Lateral inhibition is played by AHL. AHL activates the expression of Barnase (RNase Ba) which causes E. Coli to die. Barnase is the RNase from Bacillus amyloliquefaciens.
Since gene modified E. Coli is cheZ knock out strain, the difference between the diffusion rate of E. Coli and that of AHL is enough to generate Turing Pattern. However, as mentioned in Strategy section, this system may not generate Turing Pattern because the strength of the positive feedback of activator may not enough. Therefore, we improved this strategy by adding co-activator.

Improved Strategy

Fig 3.2 Construction for Improved Strategy

The inhibitory effect on co-activator from activator is caused by growth competition. When colicin sensitive cells, activator, grow faster than colicin producing cells, co-activator, and the initial concentration of activator is higher than a certain threshold, colicin sensitive cells continue to increase and colicin producing cells die[9].

RESULT

Motility Control

Diffusion rate of E.coli is one of the key factors for the control of pattern formation. As mentioned in system section, diffusion rate can be changed by the strength of CheZ gene expression. We constructed several CheZ generators which express different amount of CheZ gene and tryed to measure the diffusion rate. The picture below shows the appearance of E.coli diffusing in semi solid agar which is prepared to be very soft (0.15%) for observing E.colidiffusion.

 

APPLICATION

Our project gives data for two dimension dynamics of a specific network among cells. This data can help study of tissue formation, which is a pattern formation in three dimension. For a scaffold of pattern formation in three dimension, you can use 3D hydrogel instead of semi solid agar on a plate (Fig. 1)[10].

Fig. 1 Tissue formation by self-organization.
y interactions between cells in 3D hydrogel, a tissue may be formed. This figure is cited from the previous study[10].

REFERENCE

[1]Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237(641), 37-72.

[2]Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314(5804), 1447-1450.

[3]Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences, 106(21), 8429-8434.

[4]Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. Bioessays, 22(8), 753-760.

[5]Cascales, E. et al. (2007) Colicin Biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.

[6]Parkinson, J. S. (2003). Bacterial chemotaxis: a new player in response regulator dephosphorylation. Journal of bacteriology, 185(5), 1492-1494..

[7]Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., ... & Cavard, D. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.

[8]Lloubes, R., Bernadac, A., Houot, L., & Pommier, S. (2013). Non classical secretion systems. Research in microbiology, 164(6), 655-663.

[9]Chao, L., & Levin, B. R. (1981). Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences, 78(10), 6324-6328.

[10]Chen, T. H. (2014). Tissue Regeneration: From Synthetic Scaffolds to Self-Organizing Morphogenesis. Current stem cell research & therapy, 9(5), 432-443.