Difference between revisions of "Team:Tokyo Tech/Experiment/RNA thermometer assay"

 
(77 intermediate revisions by 3 users not shown)
Line 17: Line 17:
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
    <h4 class="subtitle"><strong>We have characterized previous parts.</strong></h4>
 
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 26: Line 25:
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
       <h3 class="link"><a href="#Results">3. Results</a></h3>  
+
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 +
      <h3 class="link2"><a href="#fluorescence">3.1. The fluorescence intensities of RFP</a></h3>
 +
      <h3 class="link2"><a href="#standardized">3.2. The standardized fluorescence intensities of RFP</a></h3>
 +
        <h3 class="link3"><a href="#standardized2">3.2.1. The standardized fluorescence intensities of RFP</a></h3>
 +
        <h3 class="link3"><a href="#standardized3">3.2.2. The standardized fluorescence intensities of RFP<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;after subtracting the background derived from the Negative control cell</a></h3>  
 
       <h3 class="link"><a href="#Discussion">4. Discussion</a></h3>               
 
       <h3 class="link"><a href="#Discussion">4. Discussion</a></h3>               
 
       <h3 class="link"><a href="#Materials">5. Materials and Methods</a></h3>
 
       <h3 class="link"><a href="#Materials">5. Materials and Methods</a></h3>
 
       <h3 class="link2"><a href="#Const">5.1.  Construction</a></h3>
 
       <h3 class="link2"><a href="#Const">5.1.  Construction</a></h3>
 
       <h3 class="link2"><a href="#Protocol">5.2. Assay Protocol</a></h3>
 
       <h3 class="link2"><a href="#Protocol">5.2. Assay Protocol</a></h3>
      <h3 class="link2"><a href="#Process">5.3. Process Data</a></h3>
 
 
       <h3 class="link"><a href="#Reference">6. Reference</a></h3>
 
       <h3 class="link"><a href="#Reference">6. Reference</a></h3>
 
       <br>
 
       <br>
Line 43: Line 46:
 
   <div class="textarea">
 
   <div class="textarea">
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
 
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
      <p class="text">Transcription of <a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a> (J23119_E115002_E1010) constructed by iGEM 2014 SYU-China is initiated at 37 ºC.  RNA thermometers are located in the 5’-untranslated region (5’-UTR) and block the Shine-Dalgarno (SD) sequence by base pairing.  At the transcription initiating temperature, the disconnection of the coupling of the hydrogen bonds, which block the SD sequence, initiates.  Therefore, RNA thermometers change their conformations to the open state so that the ribosome could access the SD sequence and the transcription of SD sequence is initiated.
+
      <p class="text">Temperature increase is required for an RNA thermometer in the enhanced expression of <a href="http://parts.igem.org/Part:BBa_K1333309:Experience">BBa_K1333309</a> (J23119_K115002_E1010) constructed by iGEM 2014 SYSU-China.  The RNA thermometers are located in the 5’-untranslated region (5’-UTR) and block the Shine-Dalgarno (SD) sequence by base pairing.  Translation initiating temperature allows the disconnection of the coupling of the hydrogen bonds, which block the SD sequence at low temperature.  Therefore, RNA thermometers change their conformations to the open state so that the ribosome could access the SD sequence and to initiate translation.</p><br>&nbsp;&nbsp;&nbsp;
We improved characterization of <a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a> by <b>(1)</b> measuring the function of the part at 42 ºC, <b>(2)</b> explicating the way to deal with background derived from Negative control, <b>(3)</b> measuring with the flow cytometer. To express the feeling of the <i>E. coli</i> which fell into dilemma, we measured the temperature dependence of the RNA thermometer.
+
                    <p class="text">We improved characterization of <a href="http://parts.igem.org/Part:BBa_K1333309:Experience">BBa_K1333309</a> by <b>(1)</b> measuring the function of the part at 42ºC, <b>(2)</b> explicating the way to deal with the background derived from Negative control, <b>(3)</b> measuring with the flow cytometer. </p><br>
</p>
+
      <p class="text">We think that this experiment is meets Gold medal criteria. <a href="https://2015.igem.org/Team:Tokyo_Tech/Description">Description</a></p>
      <p class="text"><a href="https://2015.igem.org/Team:Tokyo_Tech/Description">Description</a></p>
+
 
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
 
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
      <p class="text">Our purpose is to confirm the behavior of the RNA thermometer by setting Positive control and Negative control and to characterize the temperature dependence of the RNA thermometer at 30 ºC, 37ºC and 42 ºC by using the flow cytometer.  We prepared the samples as shown below.</p>
+
      <p class="text">Our purpose is to confirm the behavior of the RNA thermometer by setting Positive control and Negative control and to characterize the temperature dependency of the RNA thermometer at 30ºC, 37ºC and 42ºC by using the flow cytometer.  We prepared the samples as shown below.</p>
<li><p class="list">Sample: <a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>:Pcon_RNA thermometer_<i>rfp</i>(pSB1C3)</p></li>
+
<li><p class="list"><a href="http://parts.igem.org/Part:BBa_K1333309:Experience">BBa_K1333309</a>: Pcon_RNA thermometer_<i>rfp</i> (pSB1C3)</p></li>
           <li><p class="list">Positive control: Plac_<i>rfp</i>_TT(pSB1C3)</p></li>
+
           <li><p class="list">Positive control: Plac_<i>rfp</i>_TT (pSB1C3)</p></li>
           <li><p class="list">Negative control: RNA thermometer_<i>rfp</i>(pSB1C3)</p></li>
+
           <li><p class="list">Negative control: RNA thermometer_<i>rfp</i> (pSB1C3) (Promoter-less control)</p></li>
 
<br>
 
<br>
 
     <table width="980 px" border="0px">
 
     <table width="980 px" border="0px">
Line 60: Line 62:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig. 3-8-2-1.</strong>&nbsp;Parts that we used</h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-7-2-1.</strong>&nbsp;Parts that we used</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
Line 67: Line 69:
 
      
 
      
 
           <h2 id="Results" class="smalltitle">3. Results</h2>
 
           <h2 id="Results" class="smalltitle">3. Results</h2>
      <p class="text">We cultured each sample at 30 ºC that is lower than the transcription initiation temperature and 37 ºC that is higher than the transcription temperature. SYSU-China 14 confirmed the function of J23119 promoter_RNA thermomer_<i>rfp</i> (<a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>) at these temperatures. In addition, we cultured each sample at 42 ºC that is higher than the transcription initiation temperature. The wavelength of light we used to excite the cells was 642 nm. We used laser detection channel FL3 to capture the light emission from the cells.<br>&nbsp;&nbsp;We found that the fluorescence intensity of both J23119 promoter_RNA thermometer_<i>rfp</I> (<a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>) and Plac__<i>rfp</i>_TT (<a href="http://parts.igem.org/Part:BBa_J04450">BBa_Jj04450</a>) elevated with the temperature rose (Fig. 3-8-3-1).</p>
+
      <p class="text">We measured each sample at 30ºC, 37ºC and 42ºC.  The translation initiating temperature is 37ºC. Little background from medium affect results for flow cytometer.  Although <a href="https://2014.igem.org/Team:SYSU-China">iGEM 2014 SYSU-China</a> confirmed the function of Pcon_RNA thermometer_<i>rfp</i> at these temperatures, we additionally measured each sample at 42ºC, which is higher than the translation initiating temperature. </p>
    <table width="940 px" border="0px">
+
              <h3 id="fluorescence" class="sub5">3.1. The fluorescence intensities of RFP</h3>
      <tr>
+
        <p class="text2">We found that the fluorescence intensities of both Pcon_RNA thermometer_<i>rfp</i> and Plac_<i>rfp</i> increased along with the rise of the temperature (Fig. 3-7-3-1).<p><br>
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/85/Tokyo_Tech_RNA_thermometer_Result1.png" />
+
                <table width="940 px" border="0px">
      </td>
+
                <tr>
      </tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/85/Tokyo_Tech_RNA_thermometer_Result1.png" width="600px" />
      <tr>
+
                </td>
      <td width="980px">
+
                </tr>
      <h4 align="center" class="fig"><strong>Fig. 3-8-3-1</strong>&nbsp; RAW data<br>
+
                <tr>
The error bar represents the standard deviation for each sample calculated form the two values of all two colonies.</h4>
+
                <td width="940px">
      <td>
+
                <h4 align="center" class="fig"><strong>Fig. 3-7-3-1.</strong>&nbsp;RAW data<br></h4>
      </tr>
+
                <td>
      </table>
+
                </tr>
      <p class="text">When the fluorescence intensities of each sample at three temperatures (30 ºC, 37 ºC and 42 ºC) were normalized by the fluorescence intensities of each sample at 30 ºC, we confirmed that RNA thermometer worked properly with the temperature rose. The rate of increase in the fluorescence intensity by rising temperature was calculated by normalizing the fluorescence intensities of Plac_rbs_<i>rfp</i>_TT (<a href="http://parts.igem.org/Part:BBa_J04450">BBa_J04450</a>) at 37 ºC and 42 ºC by using the fluorescence intensity of Plac_rbs_<i>rfp</i>_TT (<a href="http://parts.igem.org/Part:BBa_J04450">BBa_J04450</a>) at 30 ºC (1-2 and 1-3 in FIg.  3-8-3-2). We also calculated the rate of increase in the fluorescence intensity of J23119 promoter_RNA thermometer_<i>rfp</i> (<a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>) at 37 ºC and 42 ºC by using the fluorescence intensity of J23119 promoter_RNA thermometer_<i>rfp</i> (<a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>) at 30 ºC (2-2 and 2-3 in Fig. 3-8-3-2). By comparing the rate increase in the fluorescence intensity of Plac_rbs_<i>rfp</i>_TT (<a href="http://parts.igem.org/Part:BBa_J04450">BBa_J04450</a>) at 37 ºC to the rate of increase in the fluorescence intensity of J23119 promoter_RNA thermometer_<i>RFP</i> (<a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>) at 37 ºC (1-2 and 2-2 in Fig. 3-8-3-2), and also by comparing in the same way at 42 ºC (1-3 and 2-3 in Fig. 3-8-3-2), we confirmed the increase in the fluorescence intensity by the function of RNA thermometer. The increase of the fluorescence intensity by the function of RNA thermometer at 42 ºC (1-3 and 2-3 in FIg. 3-8-3-2) is larger than at 37 ºC (1-2 and 2-2 in Fig3-8-3-2).</p>
+
      </table><br>
    <table width="940 px" border="0px">
+
        <p class="text2">The error bar represents the standard deviation of two samples which derived from two different colonies, respectively.</p>
      <tr>
+
              <h3 id="standardized" class="sub5">3.2.  The standardized fluorescence intensities of RFP</h3>
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/ef/Tokyo_Tech_RNA_thermometer_Result3.png" />
+
              <h3 id="standardized2" class="sub6">3.2.1. The standardized fluorescence intensities of RFP</h3>
      </td>
+
                <p class="text3">We obtained increasing ratios of fluorescence intensities at 37ºC and at 42ºC by dividing the each of the raw fluorescence intensities (Fig. 3-7-3-1) by those at 30ºC. The increasing ratios of the Plac_<i>rfp</i> at 37ºC and 42ºC show that the fluorescence intensities, even without the RNA thermometer, increased dependent on temperature.  We further evaluated the increasing ratios of Pcon_RNA thermometer_<i>rfp</i> at 37ºC and 42ºC.  Compared to the increasing ratios of Plac_<i>rfp</i>, those of the Pcon_RNA thermometer_<i>rfp</i> were higher at respective temperaturesThis comparison shows not only the increase in the fluorescence intensities dependent on temperature, (Fig. 3-7-3-1) but also the increase in the fluorescence intensities due to the function of the RNA thermometer (Table. 3-7-3-1).  The increasing ratio of Pcon_RNA thermometer_<i>rfp</i> was 1.3 times higher than that of Plac_<i>rfp</i> at 37ºC.  Furthermore, the increasing ratio of Pcon_RNA thermometer_<i>rfp</i> was 3.2 times higher than that of Plac_<i>rfp</i> at 42ºC. These differences of the increasing ratios were dependent on the function of the RNA thermometer. We concluded that the RNA thermometer shows higher function at 42ºC compared to 37ºC.</p>
      </tr>
+
                <table width="940 px" border="0px">
      <tr>
+
                <tr>
      <td width="980px">
+
                <td width="940px">
      <h4 align="center" class="fig"><strong>Fig. 3-8-3-2</strong>&nbsp; それぞれのサンプルの温度上昇による蛍光度の増加率<br>
+
                <h4 align="center" class="fig"><strong>Table. 3-7-3-1.</strong>&nbsp;The increasing ratios<br></h4>
The error bar represents the standard deviation for each sample calculated form the two values of all two colonies.</h4>
+
                <td>
      <td>
+
                </tr>
      </tr>
+
                <tr>
      </table>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/6/65/Tokyo_Tech_RNA_thermometer_Result2.png" width="400px" />
 +
                </td>
 +
                </tr>
 +
      </table><br>
 +
              <h3 id="standardized3" class="sub6">3.2.2. The standardized fluorescence intensities of RFP <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;after subtracting the background derived from the Negative control cell</h3>
 +
                <p class="text3">In this section, we obtained processed fluorescence intensities by subtracting the fluorescence intensity of a negative control, the RNA thermometer_<i>rfp</i> (Fig. 3-7-3-1) from both the fluorescence intensities of Plac_<i>rfp</i> and Pcon_RNA thermometer_<i>rfp</i> (Fig. 3-7-3-1), each at the same temperature.  We then obtained increasing ratios with background subtraction at 37ºC and at 42ºC by dividing the each of the processed fluorescence intensities by those at 30ºC (Table. 3-7-3-2).  The increasing ratios of the Plac_<i>rfp</i> with background subtraction at 37ºC and at 42ºC show that the fluorescence intensities increased dependently on temperature.  We evaluated the increasing ratios of Pcon_RNA thermometer_<i>rfp</i> with background subtraction at 37ºC and at 42ºC. Compared to the increasing ratios of Plac_<i>rfp</i> with background subtraction, those of the Pcon_RNA thermometer_<i>rfp</i> were higher at respective temperatures.  We observed again the increase in the fluorescence intensities due to the function of the RNA thermometer (Table. 3-7-3-2).  The increasing ratio of Pcon_RNA thermometer_<i>rfp</i> at 37ºC with background subtraction was 2.6 times higher than that of Plac_<i>rfp</i> at 37ºCFurthermore, the increasing ratio of Pcon_RNA thermometer_<i>rfp</i> with background subtraction was 6.8 times higher than that of Plac_<i>rfp</i> at 42ºC.  These differences in the increasing ratios were dependent on the function of the RNA thermometer.  We concluded that the RNA thermometer shows higher function at 42ºC compared to 37ºC.</p><br>
 +
                <table width="940 px" border="0px">
 +
<tr>
 +
                <td width="940px">
 +
                <h4 align="center" class="fig"><strong>Table. 3-7-3-2.</strong> The increasing ratios with background subtraction</h4>
 +
                <td>
 +
                </tr>
 +
                <tr>
 +
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/e/ef/Tokyo_Tech_RNA_thermometer_Result3.png" width="400px" />
 +
                </td>
 +
                </tr>
 +
                      </table><br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
Line 98: Line 123:
  
  
      <p class="text">We treated the background derived from Negative control by subtracting the fluorescence intensity of RNA thermometer <i>rfp</i> from the intensities of Plac_rbs_<i>rfp</i>_TT (K1333309) and Pcon_RNA thermometer_<i>rfp</i> (J004450). When the fluorescence intensities processed the background of Negative control of each sample a three temperatures (30 ºC, 37 ºC and 42 ºC) were normalized by the fluorescence intensities of each sample at 30 ºC, we confirmed that RNA thermometer worked properly processed the background of Negative control with the temperature rose. The rate of increase in the fluorescence intensity processed the background of Negative control by rising temperature was calculated by normalizing the fluorescence intensities processed the background of Negative control of Plac__<i>rfp</i>_TT (BBa_J04450) at 37 ºC and 42 ºC by using the fluorescence intensity processed the background of Negative control of Plac_<i>RFP</i>_TT (BBa_J04450) at 30 ºC (1-2 and 1-3 in Fig.  3-8-3-3). We also calculated the ratios of increase in the fluorescence intensity processed the background of Negative control of Pcon_RNA thermometer_<i>rfp</i> (BBa_K1333309) at 37 ºC and 42 ºC by using the fluorescence intensity processed the background of Negative control of Pcon_RNA thermometer_<i>rfp</i> (BBa_K1333309) at 30 ºC (2-2 and 2-3 in Fig.  3-8-3-3).</p>
 
      <p class="text">By comparing the rate increase in the fluorescence intensity processed the background of Negative control of Plac_<i>rfp</i>_TT (BBa_J04450) at 37 ºC to the rate of increase in the fluorescence intensity processed the background of Negative control of Pcon_RNA thermometer_<i>rfp</i> (BBa_K1333309) at 37 ºC (1-2 and 2-2 in FIg.  3-8-3-3), and also by comparing in the same way at 42 ºC (1-3 and 2-3 in FIg.  3-8-3-3), we confirmed the increase in the fluorescence intensity processed the background of Negative control by the function of RNA thermometer.The increase of the fluorescence intensity by the function of RNA thermometer at 42 ºC (1-3 and 2-3 in FIg.  3-8-3-3) is larger than at 37 ºC (1-2 and 2-2 in Fig.  3-8-3-3).</p>
 
    <table width="940 px" border="0px">
 
      <tr>
 
      <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/6/65/Tokyo_Tech_RNA_thermometer_Result2.png" />
 
      </td>
 
      </tr>
 
      <tr>
 
      <td width="980px">
 
      <h4 align="center" class="fig"><strong>Fig. 3-8-3-3</strong>&nbsp; ネガコンによるバックグラウンドを処理したのちのそれぞれのサンプルの温度上昇による蛍光度の増加率<br>
 
The error bar represents the standard deviation for each sample calculated form the two values of all two colonies.</h4>
 
      <td>
 
      </tr>
 
      </table>
 
  
  
      <p class="text">We found that the function of RNA thermometer is better at 42 ºC than at 37 ºC in both the data processed the background that was derived from Negative control (Fig. . 3-8-3-2) and the data not processed the background that was derived from Negative control (Fig. 3-8-3-3).</p>
 
  
  
Line 121: Line 131:
  
 
           <h2 id="Discussion" class="smalltitle">4. Discussion</h2>
 
           <h2 id="Discussion" class="smalltitle">4. Discussion</h2>
      <p class="text">We believed that the reason why the function of RNA thermometer was worse at 37 ºC than at 42 ºC was that hydrogen bond forming RNA thermometer weren’t cut completely at 37 ºC.
+
      <p class="text">We examined that the reason the function of the RNA thermometer was worse at 37ºC than at 42ºC was that the amount of hydrogen bonds forming RNA thermometer was not enough to change in the structure of the RNA thermometer at 37ºC.<br>&nbsp;&nbsp;
 +
Furthermore, differences between the increasing ratios with and without background subtraction disclose the importance of background treatment.  At 30ºC, Pcon_RNA thermometer_<i>rfp</i> wasn’t translated enough and showed little expression of RFP.  Since the fluorescence intensity of Pcon_RNA thermometer_<i>rfp</i> at 30ºC was small, the increasing ratios of the Pcon_RNA thermometer with and without background subtraction greatly differ in both 37ºC and 42ºC (Table. 3-7-4-1).  Therefore, it is important to clarify whether the background derived from Negative control was processed or not.
 +
</p><br>
 +
                <table width="940 px" border="0px">
 +
<tr>
 +
                <td width="940px">
 +
                <h4 align="center" class="fig"><strong>Table. 3-7-4-1. </strong>The difference the increasing ratios with and without background subtraction</h4>
 +
                <td>
 +
                </tr>
 +
 
 +
                <tr>
 +
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/2/23/Tokyo_Tech_RNA_thermometer_Result4.png" width="600px" />
 +
                </td>
 +
                </tr>
 +
                      </table>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
</p>
 
  
  
Line 132: Line 186:
 
          <p class="text2">All the samples were DH5alpha strain.</p>
 
          <p class="text2">All the samples were DH5alpha strain.</p>
 
               <h3 class="sub5">-Plasmids</h3>
 
               <h3 class="sub5">-Plasmids</h3>
          <p class="text2">Sample:J23119 promoter_RNA thermometer(FourU)_<i>rfp</i>(<a href="http://parts.igem.org/Part:BBa_K1333309">BBa_K1333309</a>)(pSB1C3)
+
          <p class="text2">(1)<a href="http://parts.igem.org/Part:BBa_K1333309:Experience">BBa_K1333309</a>: Pcon_RNA thermometer_<i>rfp</i> (pSB1C3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 140: Line 194:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-8-5-1.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-7-5-1.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table><br>
 
       </table><br>
          <p class="text2">Positive Control:Plac_<i>rfp</i>_TT(<a href="http://parts.igem.org/Part:BBa_J04450">BBa_J04450</a>)(pSB1C3)
+
          <p class="text2"><p class="text2">(2) Positive control: Plac_<i>rfp</i>_TT (pSB1C3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 152: Line 206:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-8-6-2.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-7-5-2.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table><br>
 
       </table><br>
          <p class="text2">Negative Control:RNA thermometer(FourU)_<i>rfp</i>(pSB1C3)
+
          <p class="text2">(3) Negative Control:RNA thermometer_<i>rfp</i> (pSB1C3)
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 164: Line 218:
 
       <tr>
 
       <tr>
 
       <td width="980px">
 
       <td width="980px">
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-8-5-3.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-7-5-3.</strong></h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
Line 173: Line 227:
 
               <h3 id="Protocol" class="sub5">5.2. Assay Protocol</h3>
 
               <h3 id="Protocol" class="sub5">5.2. Assay Protocol</h3>
 
                     <p class="text4">
 
                     <p class="text4">
1. Prepare 2 over night cultures for each sample in 3 mL LB medium containing chloramphenicol (25 microg / mL) at 37 ºC for 12 h.<br>
+
1. Prepare 2 over night cultures for each sample in 3 mL LB medium containing chloramphenicol (25 microg / mL) at 37ºC for 12 h.<br>
2. Dilute the overnight cultures to 1/100 in fresh LB medium (3 mL) containing chloramphenicol (25 microg / mL) (fresh culture).<br>
+
2. Dilute the overnight cultures to 1/100 in fresh LB medium (3 mL) containing chloramphenicol (25 microg / mL ) in triplicate (fresh culture).<br>
3. Incubate the fresh cultures at 37℃ for 8 h.<br>  
+
3. Incubate the triplicated fresh cultures each at 30ºC, 37ºC and 42ºC for each sample for 8 h.<br>
4. Start preparing the flow cytometer 1 h before the end of incubation.<br>
+
4. Centrifuge the samples at 9000x g, 1 min, 4ºC.<br>
5. Measure the OD590 and adjust the volume of each sample to centrifuge so that the amount of pellet will be about the same for every sample.<br>
+
5. Remove the supernatants by using P100 pipette and suspend the samples with 1 mL of filtered PBS (phosphate-buffered saline).<br>
6. Centrifuge the samples at 9000x g, 1 min , 4℃.<br>
+
6. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
7. Remove the supernatants by using P100 pipette and suspend the samples with 1 mL of filtered PBS (phosphate-buffered saline).<br>
+
7. Measure fluorescence intensity with flow cytometer.<br></p>
8. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
+
9. Measure fluorescence intensity with flow cytometer.<br></p>
+
              <h3 id="Process" class="sub5">5.3. Process Data</h3>
+
                    <p class="text4">
+
1. Calculated the arithmetic mean of fluorescence intensity of RNAt_rfp at each temperature (30 ºC, 37 ºC and 42 ºC) and used this value as the background derived from Negative control.<br>
+
2. Subtracted the background derived from Negative control from the fluorescence intensity of Plac_rbs_rfp_tt and Pcon_RNAt_rfp at each temperature.<br>
+
3. Calculated the rate of increase in fluorescence intensity by normalizing the fluorescence intensity processed the background derived from Negative control of Plac_rbs_rfp_tt and Pcon_RNAt_rfp at 37 ºC and 42 ºC by using the fluorescence intensity processed the background derived from Negative control of Plac_rbs_rfp_tt and Pcon_RNAt_rfp at 30 ºC.<br>
+
4. Calculated the arithmetic mean of the rate of increase in fluorescence for each sample at 37 ºC and 42 ºC.<br></p>
+
 
+
 
+
 
+
 
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
 
           <h2 id="Reference" class="smalltitle">6. Reference</h2>
 
      <p class="text">1. Stassen, Oscar MJA, <i>et al</i>., Toward tunable RNA thermo-switches for temperature dependent gene expression. arXiv preprint arXiv:1109.5402 (2011).</p>
 
      <p class="text">1. Stassen, Oscar MJA, <i>et al</i>., Toward tunable RNA thermo-switches for temperature dependent gene expression. arXiv preprint arXiv:1109.5402 (2011).</p>

Latest revision as of 00:46, 19 September 2015

RNA thermometer assay

  
  

1. Introduction

      

Temperature increase is required for an RNA thermometer in the enhanced expression of BBa_K1333309 (J23119_K115002_E1010) constructed by iGEM 2014 SYSU-China. The RNA thermometers are located in the 5’-untranslated region (5’-UTR) and block the Shine-Dalgarno (SD) sequence by base pairing. Translation initiating temperature allows the disconnection of the coupling of the hydrogen bonds, which block the SD sequence at low temperature. Therefore, RNA thermometers change their conformations to the open state so that the ribosome could access the SD sequence and to initiate translation.


   

We improved characterization of BBa_K1333309 by (1) measuring the function of the part at 42ºC, (2) explicating the way to deal with the background derived from Negative control, (3) measuring with the flow cytometer.


      

We think that this experiment is meets Gold medal criteria. Description

2. Summary of the Experiment

      

Our purpose is to confirm the behavior of the RNA thermometer by setting Positive control and Negative control and to characterize the temperature dependency of the RNA thermometer at 30ºC, 37ºC and 42ºC by using the flow cytometer. We prepared the samples as shown below.

  • BBa_K1333309: Pcon_RNA thermometer_rfp (pSB1C3)

  • Positive control: Plac_rfp_TT (pSB1C3)

  • Negative control: RNA thermometer_rfp (pSB1C3) (Promoter-less control)


  • Fig. 3-7-2-1. Parts that we used

    3. Results

          

    We measured each sample at 30ºC, 37ºC and 42ºC. The translation initiating temperature is 37ºC. Little background from medium affect results for flow cytometer. Although iGEM 2014 SYSU-China confirmed the function of Pcon_RNA thermometer_rfp at these temperatures, we additionally measured each sample at 42ºC, which is higher than the translation initiating temperature.

    3.1. The fluorescence intensities of RFP

          

    We found that the fluorescence intensities of both Pcon_RNA thermometer_rfp and Plac_rfp increased along with the rise of the temperature (Fig. 3-7-3-1).


    Fig. 3-7-3-1. RAW data


          

    The error bar represents the standard deviation of two samples which derived from two different colonies, respectively.

    3.2. The standardized fluorescence intensities of RFP

    3.2.1. The standardized fluorescence intensities of RFP

    We obtained increasing ratios of fluorescence intensities at 37ºC and at 42ºC by dividing the each of the raw fluorescence intensities (Fig. 3-7-3-1) by those at 30ºC. The increasing ratios of the Plac_rfp at 37ºC and 42ºC show that the fluorescence intensities, even without the RNA thermometer, increased dependent on temperature. We further evaluated the increasing ratios of Pcon_RNA thermometer_rfp at 37ºC and 42ºC. Compared to the increasing ratios of Plac_rfp, those of the Pcon_RNA thermometer_rfp were higher at respective temperatures. This comparison shows not only the increase in the fluorescence intensities dependent on temperature, (Fig. 3-7-3-1) but also the increase in the fluorescence intensities due to the function of the RNA thermometer (Table. 3-7-3-1). The increasing ratio of Pcon_RNA thermometer_rfp was 1.3 times higher than that of Plac_rfp at 37ºC. Furthermore, the increasing ratio of Pcon_RNA thermometer_rfp was 3.2 times higher than that of Plac_rfp at 42ºC. These differences of the increasing ratios were dependent on the function of the RNA thermometer. We concluded that the RNA thermometer shows higher function at 42ºC compared to 37ºC.

    Table. 3-7-3-1. The increasing ratios


    3.2.2. The standardized fluorescence intensities of RFP
              after subtracting the background derived from the Negative control cell

    In this section, we obtained processed fluorescence intensities by subtracting the fluorescence intensity of a negative control, the RNA thermometer_rfp (Fig. 3-7-3-1) from both the fluorescence intensities of Plac_rfp and Pcon_RNA thermometer_rfp (Fig. 3-7-3-1), each at the same temperature. We then obtained increasing ratios with background subtraction at 37ºC and at 42ºC by dividing the each of the processed fluorescence intensities by those at 30ºC (Table. 3-7-3-2). The increasing ratios of the Plac_rfp with background subtraction at 37ºC and at 42ºC show that the fluorescence intensities increased dependently on temperature. We evaluated the increasing ratios of Pcon_RNA thermometer_rfp with background subtraction at 37ºC and at 42ºC. Compared to the increasing ratios of Plac_rfp with background subtraction, those of the Pcon_RNA thermometer_rfp were higher at respective temperatures. We observed again the increase in the fluorescence intensities due to the function of the RNA thermometer (Table. 3-7-3-2). The increasing ratio of Pcon_RNA thermometer_rfp at 37ºC with background subtraction was 2.6 times higher than that of Plac_rfp at 37ºC. Furthermore, the increasing ratio of Pcon_RNA thermometer_rfp with background subtraction was 6.8 times higher than that of Plac_rfp at 42ºC. These differences in the increasing ratios were dependent on the function of the RNA thermometer. We concluded that the RNA thermometer shows higher function at 42ºC compared to 37ºC.


    Table. 3-7-3-2. The increasing ratios with background subtraction


    4. Discussion

          

    We examined that the reason the function of the RNA thermometer was worse at 37ºC than at 42ºC was that the amount of hydrogen bonds forming RNA thermometer was not enough to change in the structure of the RNA thermometer at 37ºC.
       Furthermore, differences between the increasing ratios with and without background subtraction disclose the importance of background treatment. At 30ºC, Pcon_RNA thermometer_rfp wasn’t translated enough and showed little expression of RFP. Since the fluorescence intensity of Pcon_RNA thermometer_rfp at 30ºC was small, the increasing ratios of the Pcon_RNA thermometer with and without background subtraction greatly differ in both 37ºC and 42ºC (Table. 3-7-4-1). Therefore, it is important to clarify whether the background derived from Negative control was processed or not.


    Table. 3-7-4-1. The difference the increasing ratios with and without background subtraction

    5. Materials and Methods

    5.1. Construction

    -Strain

          

    All the samples were DH5alpha strain.

    -Plasmids

          

    (1)BBa_K1333309: Pcon_RNA thermometer_rfp (pSB1C3)

    Fig. 3-7-5-1.


          

    (2) Positive control: Plac_rfp_TT (pSB1C3)

    Fig. 3-7-5-2.


          

    (3) Negative Control:RNA thermometer_rfp (pSB1C3)

    Fig. 3-7-5-3.


    5.2. Assay Protocol

    1. Prepare 2 over night cultures for each sample in 3 mL LB medium containing chloramphenicol (25 microg / mL) at 37ºC for 12 h.
    2. Dilute the overnight cultures to 1/100 in fresh LB medium (3 mL) containing chloramphenicol (25 microg / mL ) in triplicate (fresh culture).
    3. Incubate the triplicated fresh cultures each at 30ºC, 37ºC and 42ºC for each sample for 8 h.
    4. Centrifuge the samples at 9000x g, 1 min, 4ºC.
    5. Remove the supernatants by using P100 pipette and suspend the samples with 1 mL of filtered PBS (phosphate-buffered saline).
    6. Dispense all of each suspension into a disposable tube through a cell strainer.
    7. Measure fluorescence intensity with flow cytometer.

    6. Reference

          

    1. Stassen, Oscar MJA, et al., Toward tunable RNA thermo-switches for temperature dependent gene expression. arXiv preprint arXiv:1109.5402 (2011).

    2. SYSU-China 2014