Difference between revisions of "Team:Tokyo Tech/Composite Part"

 
(3 intermediate revisions by 2 users not shown)
Line 37: Line 37:
 
<p></p>
 
<p></p>
 
<p></p>
 
<p></p>
<p class="text">FimB (<a href="http://parts.igem.org/Part:BBa_K1632010" target="_brank">BBa_K1632010</a>) is a Fim recombinase.  This is derived from the wild type MG1655.  FimB invert the <i>fim</i> switch in the ON-to-OFF direction and in the OFF-to-ON direction (Fig.5-3-0-1.).</p>
+
<p class="text">FimB (<a href="http://parts.igem.org/Part:BBa_K1632010" target="_brank">BBa_K1632010</a>) is a Fim recombinase.  This is derived from the wild type MG1655.  FimB invert the <i>fim</i> switch in the [ON] to [OFF] direction and in the [OFF] to [ON] direction (Fig.5-3-0-1.).</p>
<p class="text">From our experimental results, we confirmed that the FimB protein inverts the <i>fim</i> switch in the ON-to-OFF direction and in the OFF-to-ON direction with approximately equal probability and works ideally (Fig.5-3-0-2.).  The expression of FimB is controlled by arabinose in PBAD/<i>araC</i>_<i>fimB</i>(wild-type) (<a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a>).</p>
+
<p class="text">From our experimental results, we confirmed that the FimB protein inverts the <i>fim</i> switch(wild-type) in the [ON] to [OFF] direction and in the [OFF] to [ON] direction with approximately equal probability and works ideally (Fig.5-3-0-2.).  The expression of FimB is controlled by arabinose in PBAD/<i>araC</i>_<i>fimB</i>(wild-type) (<a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a>).</p>
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/3/3f/Tokyo_Tech_parts6.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-0-1. Design of <i>fim</i> switch (wild-type)</h4></td></tr></tbody></table>
+
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/e/e2/Tokyo_Tech_3333333.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-0-1. Design of <i>fim</i> switch (wild-type)</h4></td></tr></tbody></table>
 
<p></p>
 
<p></p>
 
<table width="940 px" border="0px"><tr><td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1a/Tokyo_Tech_arabinose_fimB_result1.png" width="800px"/></td></tr><tr><td width="940px"><h4 align="center" class="fig">Fig. 5-3-0-2. The result of our experiment used <a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a>, <a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a> and <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a> with flow cytometers.</h4><td></tr></table><p></p>
 
<table width="940 px" border="0px"><tr><td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1a/Tokyo_Tech_arabinose_fimB_result1.png" width="800px"/></td></tr><tr><td width="940px"><h4 align="center" class="fig">Fig. 5-3-0-2. The result of our experiment used <a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a>, <a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a> and <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a> with flow cytometers.</h4><td></tr></table><p></p>
Line 88: Line 88:
 
<p></p>
 
<p></p>
 
<p></p>
 
<p></p>
<p class="text">At the first stage of our wet experiment, we used “rbs_<i>CmR</i>” (<a href="http://parts.igem.org/Part:BBa_K395160" target="_brank">BBa_K395160</a> by iGEM 2010 team Tokyo_Tech).  However, the result showed a leaky expression of CmR.  We inserted an ssrA degradation tag to the C-terminal of <i>CmR</i>.  In the our experiment using the Pcon_<i>lasR</i>_TT_Plux_<i>CmRssrA</i> (<a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a>) and Pcon_<i>rhlR</i>_TT_Plux_<i>CmRssrA</i> (<a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a>), we could not observe cell growth for cells that owned the ssrA-tagged plasmid, in the absence of AHL (Fig.5-3-1-1). From our experiment, <i>CmRssrA</i> work better than <i>CmR</i> without ssrA tag for our project.</p>
+
<p class="text">At the first stage of our wet experiment about chloramphenicol resistance(CmR), we used “rbs_<i>CmR</i>” (<a href="http://parts.igem.org/Part:BBa_K395160" target="_brank">BBa_K395160</a> by iGEM 2010 team Tokyo_Tech).  However, the result showed a leaky expression of CmR.  We inserted an ssrA degradation tag to the C-terminal of <i>CmR</i>.  In the our experiment using the Pcon_<i>lasR</i>_TT_Plux_<i>CmRssrA</i> (<a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a>) and Pcon_<i>rhlR</i>_TT_Plux_<i>CmRssrA</i> (<a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a>), we could not observe cell growth for cells that owned the ssrA-tagged plasmid, in the absence of AHL (Fig.5-3-1-1). From our experiment, <i>CmRssrA</i> work better than <i>CmR</i> without ssrA tag for our project.</p>
 
<p></p>
 
<p></p>
 
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/e/ed/Tokyo_Tech_parts4.png" width="60%"></td></tr>
 
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/e/ed/Tokyo_Tech_parts4.png" width="60%"></td></tr>
Line 107: Line 107:
 
<p></p>
 
<p></p>
 
<p></p>
 
<p></p>
<p class="text">We are the first team in iGEM to successfully construct both the <i>fim</i> switch default ON and the <i>fim</i> switch default OFF and experimented them.  These <i>fim</i> switch is derived from a wild type and the gene sequence is the same as that of a wild type. The <i>fim</i> switch is inverted by the Fim recombinase.  Therefore, we can regulate the expression of the gene downstream of the <i>fim</i> switch by adding the Fim recombinase.  From the results of experiment with flow cytometers , they work ideally (Fig.5-3-2-1. and Fig.5-3-2-2) .</p>
+
<p class="text">We are the first team in iGEM to successfully construct both the <i>fim</i> switch[default ON](wild-type) and the <i>fim</i> switch [default OFF](wild-type) and experimented them.  These <i>fim</i> switch is derived from a wild type. The <i>fim</i> switch(wild-type) has a sigma 70 promoter which functions constitutively.  We submitted two parts, one in the [default ON] (<a href="http://parts.igem.org/Part:BBa_K1632004" target="_brank">BBa_K1632004</a>) and the other in the [default OFF] (<a href="http://parts.igem.org/Part:BBa_K1632005" target="_brank">BBa_K1632005</a>)(Fig.5-3-2-1). The <i>fim</i> switch (wild-type) is inverted by two recombinases, FimB (<a href="http://parts.igem.org/Part:BBa_K1632010" target="_brank">BBa_K1632010</a>) and FimE (<a href="http://parts.igem.org/Part:BBa_K1632011" target="_brank">BBa_K1632011</a>).  Therefore, we can regulate the expression of the gene downstream of the <i>fim</i> switch (wild-type) by adding the Fim recombinase.  From our results of experiment, they work ideally (Fig.5-3-2-2 and Fig.5-3-2-3).</p>
 
<p></p>
 
<p></p>
  
Line 125: Line 125:
 
</div>
 
</div>
 
<p></p>
 
<p></p>
<p class="text">We designed another <i>fim</i> switch(Tokyo_Tech), the promoter of the <i>fim</i> switch(wild-type) is replaced with J23119 promoter(<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>) and two restriction enzyme cut sites are added in each side of the promoter. Due to this addition of the restriction enzyme cut sites, we were able to replace the J23119 promoter in the <i>fim</i> swtich(Tokyo_Tech).  For example, we replaced J23119 promoter (<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>) with Lac promoter (<a href="http://parts.igem.org/Part:BBa_R0010" target="_brank">BBa_R0010</a>). (Fig.5-3-4-1).</p>
+
<p class="text">We designed another <i>fim</i> switch with a standardized interchangeable promoter, <i>fim</i> switch (Tokyo_Tech).  A difference between the <i>fim</i> switch (wild-type) and the <i>fim</i> switch (Tokyo_Tech) is that we replaced the sigma 70 promoter to the J23119 promoter" (<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>) and two restriction enzyme cut sites are added in each side of the promoter.(Fig.5-3-3-1).  Due to this addition of the restriction enzyme cut sites, we were able to replace the J23119 promoter (<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>) in the <i>fim</i> swtich (Tokyo_Tech).  There is an example. <i>fim</i> switch [default ON] (Tokyo_Tech/R0010) (<a href="http://parts.igem.org/Part:BBa_K1632006" target="_brank">BBa_K1632006</a>) is made by removing the J23119 promoter (<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>) and inserted Plac promoter (<a href="http://parts.igem.org/Part:BBa_R0010" target="_brank">BBa_R0010</a>) (Fig.5-3-3-2) . </p>
<p></p>
+
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/a/ae/Tokyo_Tech_2222222222.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-3-1. Design of <i>fim</i> switch (Tokyo_Tech)</h4></tr></td></tbody></table>
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/c/cb/Tokyo_Tech_parts1.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-3-1. Design of <i>fim</i> switch (Tokyo_Tech)</h4></tr></td></tbody></table>
+
 
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/b/b7/Tokyo_Tech_parts10.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-3-2. Replace the promoter of <i>fim</i> switch (Tokyo_Tech)</h4></tr></td></tbody></table>
 
<table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/b/b7/Tokyo_Tech_parts10.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-3-2. Replace the promoter of <i>fim</i> switch (Tokyo_Tech)</h4></tr></td></tbody></table>
 
<p><br><br></p>
 
<p><br><br></p>
Line 138: Line 137:
 
</div>
 
</div>
 
<p></p>
 
<p></p>
<p class="text">FimE is a Fim recombinase.  This Fim recombinase is derived from the wild type MG1655.  FimE invert the <i>fim</i> switch in the ON-to-OFF direction.  The expression of these Fim recombinases are controlled by AHL in Pcon_<i>lasR</i>_TT_Plux_<i>fimE</i>(wild-type) (<a href="http://parts.igem.org/Part:BBa_K1632018" target="_brank">BBa_K1632018</a>) and Pcon_<i>rhlR</i>_TT_Plux_<i>fimE</i> (<a href="http://parts.igem.org/Part:BBa_K1632019" target="_brank">BBa_K1632019</a>).</p>
+
<p class="text">FimE is a Fim recombinase.  This Fim recombinase is derived from the wild type MG1655.  FimE invert the <i>fim</i> switch from in the [ON] to [OFF].  The expression of these Fim recombinases are controlled by AHL in Pcon_<i>lasR</i>_TT_Plux_<i>fimE</i>(wild-type)(<a href="http://parts.igem.org/Part:BBa_K1632018" target="_brank">BBa_K1632018</a>) and Pcon_<i>rhlR</i>_TT_Plux_<i>fimE</i>(wild-type)(<a href="http://parts.igem.org/Part:BBa_K1632019" target="_brank">BBa_K1632019</a>).</p>
<p></p>
+
 
<p></p>
 
<p></p>
  

Latest revision as of 03:14, 19 September 2015

Composite Part

  
      

fimB(wild-type) controlled arabinose: BBa_K1632012

BBa_K1632012 meet the criteria of the Silver Medal

FimB (BBa_K1632010) is a Fim recombinase. This is derived from the wild type MG1655. FimB invert the fim switch in the [ON] to [OFF] direction and in the [OFF] to [ON] direction (Fig.5-3-0-1.).

From our experimental results, we confirmed that the FimB protein inverts the fim switch(wild-type) in the [ON] to [OFF] direction and in the [OFF] to [ON] direction with approximately equal probability and works ideally (Fig.5-3-0-2.). The expression of FimB is controlled by arabinose in PBAD/araC_fimB(wild-type) (BBa_K1632012).

Fig.5-3-0-1. Design of fim switch (wild-type)

Fig. 5-3-0-2. The result of our experiment used BBa_K1632007, BBa_K1632008 and BBa_K1632012 with flow cytometers.








      

0.Tokyo Tech 2015 iGEM Team: The Others Composite Parts

NameTypeDescriptionDesignLength(bp)Experiment
BBa_K1632002Regulatoryfim switch[default ON](Tokyo_Tech/J23119)_gfpRiku Shinohara1178Work
BBa_K1632003Regulatoryfim switch[default OFF](Tokyo_Tech/J23119)_gfpRiku Shinohara1178Work
BBa_K1632007Compositefim switch[default ON](wild-type)_gfpRiku Shinohara1128Work
BBa_K1632008Compositefim switch[default OFF](wild-type)_gfpRiku Shinohara1128Work
BBa_K1632012CompositePBAD/araC_fimB(wild-type)Riku Shinohara1839Work
BBa_K1632013CompositePbad/araC_fimE(wild-type)Riku Shinohara1835Work
BBa_K1632018CompositeJ23100_lasR_TT_Plux_fimE (wild-type)Jun Kawamura1609
BBa_K1632019CompositeJ23100_rhlR_TT_Plux_fimE (wild-type)Jun Kawamura1615
BBa_K1632020Compositerbs_CmRssrAJun Kawamura712Work
BBa_K1632022CompositeJ23100_lasR_TT_Plux_CmRssrAJun Kawamura1704Work
BBa_K1632023CompositeJ23100_rhlR_TT_Plux_CmRssrAJun Kawamura1710Work

1. Best New Improved Part: BBa_K1632020, BBa_K1632022, BBa_K1632023

BBa_K1632020, BBa_K1632022 and BBa_K1632023 meet the criteria of the Gold Medal

At the first stage of our wet experiment about chloramphenicol resistance(CmR), we used “rbs_CmR” (BBa_K395160 by iGEM 2010 team Tokyo_Tech). However, the result showed a leaky expression of CmR. We inserted an ssrA degradation tag to the C-terminal of CmR. In the our experiment using the Pcon_lasR_TT_Plux_CmRssrA (BBa_K1632022) and Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632023), we could not observe cell growth for cells that owned the ssrA-tagged plasmid, in the absence of AHL (Fig.5-3-1-1). From our experiment, CmRssrA work better than CmR without ssrA tag for our project.

Fig.5-3-1-1. The cell’s growth with Cm

2. fim switch(wild-type) with gfp: BBa_K1632007, BBa_K1632008

BBa_K1632007 and BBa_K1632008 meet the criteria of the Silver Medal

We are the first team in iGEM to successfully construct both the fim switch[default ON](wild-type) and the fim switch [default OFF](wild-type) and experimented them. These fim switch is derived from a wild type. The fim switch(wild-type) has a sigma 70 promoter which functions constitutively. We submitted two parts, one in the [default ON] (BBa_K1632004) and the other in the [default OFF] (BBa_K1632005)(Fig.5-3-2-1). The fim switch (wild-type) is inverted by two recombinases, FimB (BBa_K1632010) and FimE (BBa_K1632011). Therefore, we can regulate the expression of the gene downstream of the fim switch (wild-type) by adding the Fim recombinase. From our results of experiment, they work ideally (Fig.5-3-2-2 and Fig.5-3-2-3).

Fig. 5-3-2-1. The result of our experiment used BBa_K1632007, BBa_K1632008 and BBa_K1632012 with flow cytometers.

Fig.5-3-2-2. The result of our experiment used BBa_K1632007,BBa_K1632008 and BBa_K1632013 with flow cytometers

3. fim switch(Tokyo_Tech) with gfp: BBa_K1632002, BBa_K1632003

BBa_K1632002 and BBa_K1632003 meet the criteria of the Bronze Medal

We designed another fim switch with a standardized interchangeable promoter, fim switch (Tokyo_Tech). A difference between the fim switch (wild-type) and the fim switch (Tokyo_Tech) is that we replaced the sigma 70 promoter to the J23119 promoter" (BBa_J23119) and two restriction enzyme cut sites are added in each side of the promoter.(Fig.5-3-3-1). Due to this addition of the restriction enzyme cut sites, we were able to replace the J23119 promoter (BBa_J23119) in the fim swtich (Tokyo_Tech). There is an example. fim switch [default ON] (Tokyo_Tech/R0010) (BBa_K1632006) is made by removing the J23119 promoter (BBa_J23119) and inserted Plac promoter (BBa_R0010) (Fig.5-3-3-2) .

Fig.5-3-3-1. Design of fim switch (Tokyo_Tech)

Fig.5-3-3-2. Replace the promoter of fim switch (Tokyo_Tech)



4. fimE(wild-type) controlled by AHL: BBa_K1632018, BBa_K1632019

FimE is a Fim recombinase. This Fim recombinase is derived from the wild type MG1655. FimE invert the fim switch from in the [ON] to [OFF]. The expression of these Fim recombinases are controlled by AHL in Pcon_lasR_TT_Plux_fimE(wild-type)(BBa_K1632018) and Pcon_rhlR_TT_Plux_fimE(wild-type)(BBa_K1632019).