Difference between revisions of "Team:XJTLU-CHINA/Parts"
Kerberos01 (Talk | contribs) |
Kerberos01 (Talk | contribs) |
||
(17 intermediate revisions by 3 users not shown) | |||
Line 77: | Line 77: | ||
padding-bottom: 15px; | padding-bottom: 15px; | ||
background-color: #3399FF; | background-color: #3399FF; | ||
+ | margin-left:-20px; | ||
} | } | ||
Line 230: | Line 231: | ||
padding-bottom: 15px; | padding-bottom: 15px; | ||
background-color: #3399FF; | background-color: #3399FF; | ||
+ | margin-left:-20px; | ||
} | } | ||
Line 309: | Line 311: | ||
font-weight: 600; | font-weight: 600; | ||
padding-top: 111px; | padding-top: 111px; | ||
+ | padding-left:10px; | ||
} | } | ||
Line 315: | Line 318: | ||
font-weight: 600; | font-weight: 600; | ||
padding-top: 5px; | padding-top: 5px; | ||
+ | padding-left:10px; | ||
} | } | ||
+ | |||
.navilogo{ | .navilogo{ | ||
Line 362: | Line 367: | ||
h2{ | h2{ | ||
margin-bottom: 50px; | margin-bottom: 50px; | ||
− | font-size: | + | font-size: 45px; |
color: black; | color: black; | ||
font-weight: 300; | font-weight: 300; | ||
Line 647: | Line 652: | ||
<ul> | <ul> | ||
<li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J1">Map description</a></li> | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J1">Map description</a></li> | ||
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J2"> | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J2">RNAT</a></li> |
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J4"> | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J4">The second trial of RNAT testing</a></li> |
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description# | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J5">Chromo-protein testing</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
Line 668: | Line 673: | ||
<li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J1">Team introduction</a></li> | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J1">Team introduction</a></li> | ||
<li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J2">Attribution</a></li> | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J2">Attribution</a></li> | ||
+ | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J3">Achievements</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 715: | Line 721: | ||
</div> | </div> | ||
<ul> | <ul> | ||
− | <li><a class="jump1" href=" | + | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations#J1">with NYU-Shanghai</a></li> |
− | <li><a class="jump2" href=" | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations#synbio">Synbio-tech</a></li> |
+ | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations#J2">with BIT-China</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 744: | Line 751: | ||
<ul> | <ul> | ||
<li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J1">Map description</a></li> | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J1">Map description</a></li> | ||
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J2"> | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J2">RNAT</a></li> |
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J4"> | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J4">Improve experiment of RNAT</a></li> |
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description# | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Description#J5">Chromo-protein testing</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
Line 765: | Line 772: | ||
<li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J1">Team introduction</a></li> | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J1">Team introduction</a></li> | ||
<li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J2">Attribution</a></li> | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J2">Attribution</a></li> | ||
+ | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Team#J3">Achievements</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 810: | Line 818: | ||
<li class="ZmainNavi col1"> | <li class="ZmainNavi col1"> | ||
<div id="ZPrimaryNaviBg9"> | <div id="ZPrimaryNaviBg9"> | ||
− | <a class="ZprimaryNavi" href="https://2015.igem.org/Team:XJTLU-CHINA/ | + | <a class="ZprimaryNavi" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations">Collaboration</a> |
</div> | </div> | ||
<ul> | <ul> | ||
− | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/ | + | <li><a class="jump1" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations#J1">with NYU-Shanghai</a></li> |
− | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/ | + | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations#synbio">Synbio-tech</a></li> |
+ | <li><a class="jump2" href="https://2015.igem.org/Team:XJTLU-CHINA/Collaborations#J2">with BIT-China</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 830: | Line 839: | ||
<div class="overview"> | <div class="overview"> | ||
<div class="title"> | <div class="title"> | ||
− | <p class="heading"> | + | <p class="heading">Parts</p> |
</div> | </div> | ||
</div> | </div> | ||
Line 844: | Line 853: | ||
<div class="container"> | <div class="container"> | ||
<div class="lv1"> | <div class="lv1"> | ||
− | <h2>Modularity</h2> | + | <h2 style="color: #FFFFFF">Modularity</h2> |
</div> | </div> | ||
</div> | </div> | ||
Line 851: | Line 860: | ||
<div class="lv1"> | <div class="lv1"> | ||
<div class="lv3"> | <div class="lv3"> | ||
− | <p>After the team had finished the genetic design of | + | <p>After the team had finished the genetic design of Inland, Coastal, Marine, and Polar bacteria, time was almost run out and there were still some concerns on the performance of promoters and ribothermometers. To make sure that we could have a chance to test the uncertain parts without delaying the whole circuits’ synthesis, instructor suggested us to modularize genetic circuits and then manipulate the modules by using Gibson Assembly.</p> |
<br/> | <br/> | ||
− | <p>The team divided modules into two groups. One is “promoter + operator/ RBS/Ribothermometer”. The other one is “Coding sequence + terminator”. Details are in the following form. </p> | + | <p>The team divided the modules into two groups. One is “promoter + operator/ RBS/Ribothermometer”. The other one is “Coding sequence + terminator”. Details are in the following form. </p> |
<br/> | <br/> | ||
− | <p>Actually in | + | <p>Actually, in Inland, Coastal, Marine and Polar bacteria, there are several overlaps in the composition of genetic circuits. For instance, Marine and Polar bacteria both contain blue chromoprotein gene; Coastal and Inland bacteria both contain yellow chromoprotein gene. Each repeating part is only shown as one module.</p> |
</div> | </div> | ||
</div> | </div> | ||
Line 869: | Line 878: | ||
<P>How can modularity help?</P> | <P>How can modularity help?</P> | ||
<br/> | <br/> | ||
− | <P>Firstly, the modules would be directly inserted | + | <P>Firstly, the modules would be directly inserted into the plasmid pSB1C3, so that the team could hand in new parts immediately after characterizing them. </P> |
<br/> | <br/> | ||
− | <P>Secondly, this method ensures us to get the perfect circuits as soon as possible. It makes constructing long designed genetic circuit a more flexible process compared to the original gene synthesis and it is just the same way as an engineer welds all electronic components together to make a circuit board with expected function. Moreover, in this case, we | + | <P>Secondly, this method ensures us to get the perfect circuits as soon as possible. It makes constructing long designed genetic circuit a more flexible process compared to the original gene synthesis and it is just the same way as an engineer welds all electronic components together to make a circuit board with expected function. Moreover, in this case, we won’t need to repeat constructing the same modules used in different circuits. </P> |
<br/> | <br/> | ||
<P>Thirdly, Gibson assembly is capable for successful assembly of multiple DNA fragments. Hence, verified modules can later be integrated with others quickly. </P> | <P>Thirdly, Gibson assembly is capable for successful assembly of multiple DNA fragments. Hence, verified modules can later be integrated with others quickly. </P> | ||
Line 889: | Line 898: | ||
<div class="thirdPageBg"> | <div class="thirdPageBg"> | ||
<div class="thePartLinkBox"> | <div class="thePartLinkBox"> | ||
− | <a class="thePartLink" href="https://2015.igem.org/Team:XJTLU-CHINA/PartDetail">Click for Part Details</a> | + | <a class="thePartLink" href="https://2015.igem.org/Team:XJTLU-CHINA/PartDetail" style="color: #FFFFFF">Click for Part Details</a> |
</div> | </div> | ||
</div> | </div> | ||
Line 897: | Line 906: | ||
<div class="footer"> | <div class="footer"> | ||
<div class="footerBg"> | <div class="footerBg"> | ||
− | <div class="container" style="text-align: center"> | + | <div class="container" style="text-align: center; padding-top: 40px;"> |
<img class="logo" src="https://static.igem.org/mediawiki/2015/d/da/LogoXJTLU15.png" height="53"> | <img class="logo" src="https://static.igem.org/mediawiki/2015/d/da/LogoXJTLU15.png" height="53"> | ||
<img class="logo" src="https://static.igem.org/mediawiki/2015/9/96/Logo2XJTLU15.png" height="50"> | <img class="logo" src="https://static.igem.org/mediawiki/2015/9/96/Logo2XJTLU15.png" height="50"> | ||
− | <img class="logo" src="https://static.igem.org/mediawiki/2015/e/e3/%E6%B3%93%E8%BF%85%E7%A7%91%E6%8A%80Synbio_Technologies_Logo.png" height="50 | + | <img class="logo" src="https://static.igem.org/mediawiki/2015/e/e3/%E6%B3%93%E8%BF%85%E7%A7%91%E6%8A%80Synbio_Technologies_Logo.png" height="50" > |
<br/> | <br/> | ||
<img class="logo" src="https://static.igem.org/mediawiki/2015/4/41/AgilentXJTLU15.png" height="50" style="margin-top:60px;"> | <img class="logo" src="https://static.igem.org/mediawiki/2015/4/41/AgilentXJTLU15.png" height="50" style="margin-top:60px;"> |
Latest revision as of 16:17, 4 October 2015
XJTLU-CHINA
Parts
Modularity
After the team had finished the genetic design of Inland, Coastal, Marine, and Polar bacteria, time was almost run out and there were still some concerns on the performance of promoters and ribothermometers. To make sure that we could have a chance to test the uncertain parts without delaying the whole circuits’ synthesis, instructor suggested us to modularize genetic circuits and then manipulate the modules by using Gibson Assembly.
The team divided the modules into two groups. One is “promoter + operator/ RBS/Ribothermometer”. The other one is “Coding sequence + terminator”. Details are in the following form.
Actually, in Inland, Coastal, Marine and Polar bacteria, there are several overlaps in the composition of genetic circuits. For instance, Marine and Polar bacteria both contain blue chromoprotein gene; Coastal and Inland bacteria both contain yellow chromoprotein gene. Each repeating part is only shown as one module.
How can modularity help?
Firstly, the modules would be directly inserted into the plasmid pSB1C3, so that the team could hand in new parts immediately after characterizing them.
Secondly, this method ensures us to get the perfect circuits as soon as possible. It makes constructing long designed genetic circuit a more flexible process compared to the original gene synthesis and it is just the same way as an engineer welds all electronic components together to make a circuit board with expected function. Moreover, in this case, we won’t need to repeat constructing the same modules used in different circuits.
Thirdly, Gibson assembly is capable for successful assembly of multiple DNA fragments. Hence, verified modules can later be integrated with others quickly.