Difference between revisions of "Team:Tokyo Tech/Experiment/FimB dependent fim switch state assay"

 
(86 intermediate revisions by 6 users not shown)
Line 26: Line 26:
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
 
       <h3 class="link"><a href="#Results">3. Results</a></h3>
 
       <h3 class="link"><a href="#Results">3. Results</a></h3>
       <h3 class="link2"><a href="#Result1">3.1. Arabinose dependent FimE expression</a></h3>
+
       <h3 class="link2"><a href="#Result1">3.1. Arabinose-dependent FimB (wild-type) expression</a></h3>
       <h3 class="link2"><a href="#Result2">3.2. FLA analysis</a></h3>
+
       <h3 class="link2"><a href="#Result2">3.2. Supplemental experiments</a></h3>
       <h3 class="link"><a href="#Discussion">4. Materials and Methods</a></h3>               
+
       <h3 class="link"><a href="#Discussion">4. Discussion</a></h3>               
 
       <h3 class="link"><a href="#Materials">5. Materials and Methods</a></h3>
 
       <h3 class="link"><a href="#Materials">5. Materials and Methods</a></h3>
 
       <h3 class="link2"><a href="#Const">5.1.  Construction</a></h3>
 
       <h3 class="link2"><a href="#Const">5.1.  Construction</a></h3>
 
       <h3 class="link2"><a href="#Protocol">5.2. Assay Protocol</a></h3>
 
       <h3 class="link2"><a href="#Protocol">5.2. Assay Protocol</a></h3>
         <h3 class="link3"><a href="#Protol1">5.2.1 Arabinose dependent FimE expression</a></h3>
+
         <h3 class="link3"><a href="#Protol1">5.2.1 Arabinose dependent FimB(wile-type) expression</a></h3>
         <h3 class="link3"><a href="#Protol2">5.2.2. FLA analysis</a></h3>
+
         <h3 class="link3"><a href="#Protol2">5.2.2. Supplemental experiments</a></h3>
 
       <h3 class="link"><a href="#Reference">6. Reference</a></h3>
 
       <h3 class="link"><a href="#Reference">6. Reference</a></h3>
 
       <br>
 
       <br>
Line 48: Line 48:
 
                 <tr>
 
                 <tr>
 
               <td width="470px">
 
               <td width="470px">
            <p class="text">In order to enable a prisoner <i>coli</i> to randomly select its option between cooperation and defection, we noticed that a <i>fim</i> switch(wild-type), which can invert a promoter sequence bidirectionally in the presence of FimB (wild-type) recombinase, is the part we need (Fig. 3-4-1-1).</p></td>
+
            <p class="text">In order to enable a prisoner <i>coli</i> to randomly select its option between cooperation and defection, we noticed that a <i>fim</i> switch(wild-type), which can invert a promoter sequence bidirectionally in the presence of FimB(wild-type) recombinase, is the part we need (Fig. 3-4-1-1).</p></td>
 
                 <td width="470px">
 
                 <td width="470px">
                   <div align="center"><img src="https://static.igem.org/mediawiki/2015/e/ee/Tokyo_Tech_fimB_summary.png" width="450px"/>
+
                   <div align="center"><img src="https://static.igem.org/mediawiki/2015/c/cb/Tokyo_Tech_fimE_result1.png" width="450px"/>
 
                 </td>
 
                 </td>
 
                 </tr>
 
                 </tr>
Line 56: Line 56:
 
       <td width="940px">&nbsp;</td>
 
       <td width="940px">&nbsp;</td>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-4-1-1.</strong>&nbsp;In the presence of FimB recombinase, the <i>fim</i> switch which is a promoter containing repeated DNA sequence, is invert at random. </h4>
+
       <h4 align="center" class="fig"><strong>Fig.&nbsp;3-4-1-1.</strong>&nbsp;In the presence of FimB(wild-type) recombinase, the <i>fim</i> switch which is a promoter containing repeated DNA sequence, is inverted at random.  
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
      <p class="text">For implementation of Decision making <i>coli</i>, we newly constructed plasmid, P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a>) that produces FimB (wild-type).  We also prepared two other new plasmids, <a href="http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a> (Fig. 3-4-1-2).  <a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> enables arabinose-inducible expression of FimB (wild-type).  In <a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a>, either [ON] or [OFF] <i>fim</i> switch (wild-type) is placed upstream of GFP coding sequence. </p>  
+
      <p class="text">For implementation of Decision making <i>coli</i>, we newly constructed plasmid, P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (<a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a>) that produces FimB(wild-type).  We also prepared two other new plasmids, <a href="http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a> (Fig. 3-4-1-2).  <a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> enables arabinose-inducible expression of FimB(wild-type).  In <a href="http://parts.igem.org/Part:BBa_K1632007">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008">BBa_K1632008</a>, either [ON] or [OFF] <i>fim</i> switch(wild-type) is placed upstream of GFP coding sequence. </p>  
 
          <table width="940 px" border="0px">
 
          <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
Line 68: Line 68:
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-4-1-2.</strong>&nbsp;New plasmids we constructed to confirm the function of <a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> plasmid for Decision making <i>coli</i></h4>
+
       <h4 align="center" class="fig"><strong>Fig.3-4-1-2.</strong>&nbsp;New plasmids we constructed to confirm the function of <a href="http://parts.igem.org/Part:BBa_K1632012">BBa_K1632012</a> plasmid for Decision making <i>coli</i>.</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
 +
<p class="text2">
  
  
Line 79: Line 80:
  
 
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
 
           <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
      <p class="text">Our purpose is to confirm that FimB (wild-type) inverts the <i>fim</i> switch (wild-type) from ON to the OFF and from OFF to ON (Fig.3-5-2-1). We prepared six plasmids below. (Fig.3-5-2-2). We measured the fluorescence intensity from the GFP expression in the presence of arabinose. From the results, we confirmed that our <i>fim</i> switch (wild-tyoe) is inverted from ON to OFF and OFF to ON. From the results we also confirmed our <i>fim</i> switch (wild-type) is not inverted by the endogenous FimB and FimE and that FImB expression doesn’t affect the gfp expression. We also confirmed the inversion of our <i>fim</i> switch (wild-type) by コロニーカウンティング以下は篠原よろしく</p>
+
      <p class="text">Our purpose is to confirm that FimB(wild-type) inverts the <i>fim</i> switch(wild-type) from [ON] state to[OFF] state and from [OFF] state to [ON] state (Fig.3-4-2-1). We prepared six plasmids below. We measured the fluorescence intensity from the GFP expression in the presence of arabinose. From the results, we confirmed that our <i>fim</i> switch(wild-type) is inverted from [ON] state to [OFF] state and [OFF] state to [ON] state. From the results we also confirmed our <i>fim</i> switch(wild-type) is not inverted by the endogenous FimB and FimE and that FimB(wild-type) expression doesn’t affect the GFP expression. In order to confirm inversion more precisely, we also show the percentage of [ON] state with induction by arabinose and without induction. Also we show inversion in the level of DNA sequencing.</p>
 
<p class="text4">
 
<p class="text4">
(1) P<sub>BAD/<i>araC</i></sub>_<i>fimB</i> (pSB6A1)+<i> fim</i> switch[default ON](wild-type)_GFP (pSB3K3)<br>
+
(1) P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + <i> fim</i> switch[default ON](wild-type)_<i>gfp</i> (pSB3K3)<br>
(2) P<sub>BAD/<i>araC</i></sub>_<i>fimB</i> (pSB6A1) +<i> fim</i> switch[default OFF](wild-type) _GFP (pSB3K3)<br>
+
(2) P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + <i> fim</i> switch[default OFF](wild-type)_<i>gfp</i> (pSB3K3)<br>
(3)Positive control 1: (pSB6A1)+ <i>fim</i> switch[default ON](wild-type) _GFP (pSB3K3)<br>
+
(3) Positive control 1 : (pSB6A1)+ <i>fim</i> switch[default ON](wild-type)_<i>gfp</i> (pSB3K3)<br>
(4)Negative control 1: (pSB6A1)+ <i>fim</i> switch[default OFF](wild-type) _GFP (pSB3K3)<br>
+
(4) Negative control 1 : (pSB6A1)+ <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i> (pSB3K3)<br>
(5)Positive control 2: P<sub>BAD/<i>araC</i></sub>_<i>fimB</i> (wild-type) (pSB6A1)+J23119_GFP (pSB3K3)<br>
+
(5) Positive control 2 : P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + Pcon_<i>gfp</i> (pSB3K3)<br>
(6)Negative control 2: PBAD/araC_FimB (wild-type) (pSB6A1)+rbs_GFP (pSB3K3)<br>
+
(6) Negative control 2 : P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + promoter less_<i>gfp</i> (pSB3K3)<br>
  
 
     <table width="940 px" border="0px">
 
     <table width="940 px" border="0px">
 
       <tr>
 
       <tr>
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/d/dd/Tokyo_Tech_arabinosefimB.png" width="800px" />
+
       <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/d/dd/Tokyo_Tech_arabinosefimB.png" width="700px" />
 
       </td>
 
       </td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
       <td width="940px">
 
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig.3-4-2-1.</strong>&nbsp;Plasmids for the experiment of FimB dependent fim switch state assay</h4>
+
       <h4 align="center" class="fig"><strong>Fig.3-4-2-1.</strong>&nbsp;Plasmids for the experiment of FimB dependent <i>fim</i> switch state assay</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
 
 
 
 
 
 
 
 
 
 
 
           <h2 id="Results" class="smalltitle">3. Results</h2>
 
           <h2 id="Results" class="smalltitle">3. Results</h2>
               <h3 id="Result1" class="sub5">3.1. Arabinose dependent FimE expression</h3>
+
               <h3 id="Result1" class="sub5">3.1. Arabinose-dependent FimB(wild-type) expression</h3>
          <p class="text2">私たちは、4種類のarabinose濃度でFimBが働くかどうかを、GFPを用いたレポーターアッセイによって確かめた。
+
          <p class="text2">We tried to confirm that the <i>fim</i> switch is bidirectically inverted in the presence of FimB(wild-type) by using GFP as a reporter, under 4 different concentrations of arabinose. In the medium with 0 M arabinose, we supplemented the medium with 0.5 percent glucose in order to repress the leakage in the P<sub>BAD/<i>araC</i></sub> promoter. Fig. 3-4-3-1 shows the histograms of the samples measured by the flow cytometer. In the results of the reporter cell (1), when the induction of FimB(wild-type) expression increases, the fluorescence intensity decreases. From this fact, we confirmed that the <i>fim</i> switch(wild-type) is inverted from [ON] state to [OFF] state by FimB(wild-type). From the result of the reporter cell (2), when the expression amount of FimB(wild-type) increases, the expression amount of GFP in the reporter cell (2) increases. From this fact, we confirmed that the <i>fim</i> switch(wild-type) is inverted from [OFF] state to [ON] state by FimB(wild-type). From the results of the two reporter cells (1) and (2), we successfully confirmed that FimB(wild-type) inverts the <i>fim</i> switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state.<br>&nbsp;&nbsp;
 Figure(図番号) は、default ONのサンプルが、arabinose誘導によって、OFF状態に切り替わった結果を示している。
+
 The results of Positive control 1 and Negative control 1 confirmed that the endogenous FimB and FimE did not invert our <i>fim</i> switch(wild-type). Also, the result of Negative control 2, indicates that the expression of FimB(wild-type) do not affect GFP expression. The reason the fluorescence intensity of the Positive control 2 is increasing in proportion to the arabinose concentration is described in 4. Discussion section.
またFigure(図番号)は、default OFFのサンプルが、arabinose誘導によって、ON状態に切り替わった結果を示している。
+
Figure(図番号) shows our experimental results of FimB and Fimswitch. From the results of the reporter cell C and D, inversion from ON to OFF and OFF to ON by endogenous proteins are negligible. レポーターセルE,Fの結果から、FImEの発現はヒストグラムの波形にほとんど影響を与えないことがわかる。
+
以上の2つの結果から、FimBが理想的に両反転を起こしていることがわかる。
+
 
</p>
 
</p>
 
                 <table width="940 px" border="0px">
 
                 <table width="940 px" border="0px">
Line 123: Line 111:
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
       <td width="980px">
+
       <td width="940px">
       <h4 align="center" class="fig"><strong>Fig. 3-4-3-1.</strong></h4>
+
       <h4 align="center" class="fig"><strong>Fig. 3-4-3-1.</strong> The histograms of the samples measured by flow cytometer</h4>
 
       <td>
 
       <td>
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
               <h3 id="Result2" class="sub5">3.2. FLA analysis</h3>
+
               <h3 id="Result2" class="sub5">3.2. Supplemental experiments</h3>
          <p class="text2">写真とシークエンスデータ</p>
+
<p class="text2">To confirm our results that our FimB(wild-type) inverted the <i>fim</i> switch(wild-type) further, after scattering the samples on a plate, we counted the number of colonies in which GFP is expressed and the colonies which GFP is not expressed.
 +
After measurement of flow cytometer, we minipreped the cells culture of leftover and got plasmid mixture which contain pSB6A1 and pSB3K3 in each samples. For example, in sample (1), P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + fim switch[default ON](wild-type)_<i>gfp</i> (pSB3K3), pSB6A1 represents P<sub>BAD/<i>araC</i></sub>_<i>FimB</i> and pSB3K3 represent <i>fim</i> swtich[default ON](wild-type)_<i>gfp</i> and <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>. <i>E. coli</i> DH5alpha was transformed with the plasmid mixture and cultured on LB plate containing kanamycin and glucose. As a result, <i>E. coli</i> which at least have pSB3K3 containing <i>fim</i> switch[default ON]_<i>gfp</i> or <i>fim</i> switch[default OFF]_<i>gfp</i> form colonies. Some colonies may have both pSB3K3 and pSB6A1 plasmid. However, the <i>fim</i> switch(wild-type) is not inverted by the leak of recombinase because glucose repress <i>araC</i> that activates expression of recombinase.</p>
 +
          <table width="940 px" border="0px">
 +
                                  <tr>
 +
              <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/a/a7/Http2015.igem.orgwikiimages33eTokyo_Tech_fimB_result1.png.png" width="800px"/>
 +
</tr>
 +
<tr>
 +
              <td width="940px"><h4 align="center" class="fig"><strong>Fig. 3-4-3-2.</strong>&nbsp; Determination of percentage of [ON] state and colony formation using plasmid mixture extracted cell expressing FimB.</h4></td>
 +
                </tr>
 +
</table><br><br>
 +
<p class="text2">The state of <i>fim</i> switch either [ON] or [OFF] in colonies is evaluated from fluorescence. Thus, colonies which contain <i>fim</i> switch[default ON] expressed GFP. On the other hand, colonies which contain <i>fim</i> switch[default OFF] do not express GFP. Fluorescence intensity were measured by plate reader. We also counted out the all colonies and those with fluorescence. In the results of the reporter cell (1), when inducing the expression of FimB(wild-type), the percentage of [ON] state decreased. Furthermore, from the results of the reporter cell (2), when inducing the expression of FimB(wild-type), the percentage of [ON] state increased. From the results of the two reporter cells (1) and (2), we successfully confirmed that the fimB protein inverts the <i>fim</i> switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state (Fig. 3-4-3-2). This result was consistent with the histograms (Fig. 3-4-3-3). </p>  
 +
          <table width="940 px" border="0px">
 +
                <tr>
 +
              <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/9/9d/Tokyo_Tech_fimB_result2.png" />
 +
</tr>
 +
                <tr>
 +
              <td width="940px"><h4 align="center" class="fig"><strong>Fig. 3-4-3-3.</strong>&nbsp;DNA sequencing results of <i>fim</i> switch.</h4></td>
 +
                </tr></table>
 +
 
 +
<p class="text2">Also, we incubated the colonies with fluorescence and those without fluorescence. We minipreped cell culture and asked DNA sequencing of each samples. Sequence complementarity in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all samples (Fig. 3-4-3-3). </p>
 +
</table>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 
           <h2 id="Discussion" class="smalltitle">4. Discussion</h2>
 
           <h2 id="Discussion" class="smalltitle">4. Discussion</h2>
          <p class="text">When FimB concentration increased by increasing arabinose concentration, we confirmed that Fluorescence intensity was decreased in both of ON to OFF and OFF to ON.<br>  
+
                <table width="940 px" border="0px">
&nbsp;&nbsp;According to [1], increasing switching frequency by increasing FimB expression decrease mean expression because it is enough time for FimB to bind to the inversion sequences and disrupt transcription initiation or elongation.<br>
+
                  <tr>
&nbsp;&nbsp;Similar increase dependent on FimB expression was found in control samples(図). Because FimE expression decreases cell growth rate, decreased dilution rate of proteins including GFP from leaky expression in the cells could slightly increase of fluorescence in a cell.  
+
                  <td width="470px"><p class="text">When the concentration of FimB(wild-type) increased by increasing concentration of arabinose, we confirmed that the fluorescence intensity decreased in both [ON] to [OFF] process and [OFF] to [ON] process.<br>&nbsp;&nbsp;  
</p>
+
  The result of the reporter cell (2) shows that when the concentration of arabinose is increased to 0〜20 microM, the fluorescence intensity increases. This shows the function of FimB(wild-type) inverting the <i>fim</i> switch(wild-type) from [OFF] state to [ON] state. However, when the arabinose concentration is excess (5mM), the fluorescence intensity decreases (Fig. 3-4-4-1). According to [1], this is caused by the excess increase in the inversion rate of the <i>fim</i> switch(wild-type). When the inversion rate is too high, there is not enough time for transcription initiation. Consequently, GFP expression decreases.</p></td>
 +
                  <td width="470px">
 +
                    <div align="center"><img src="https://static.igem.org/mediawiki/2015/9/93/Tokyo_Tech_arabinose_fimB_discussion1.png" width="450px"/>                 
 +
                  </td>
 +
                  </tr>
 +
                  <tr>
 +
                  <td width="470px">&nbsp;</td>
 +
                  <td width="470px"><h4 align="center" class="fig"><strong>Fig. 3-4-4-1.</strong>&nbsp;The histogram of reporter cell (2)</h4></td>
 +
                </table><br>
 +
                <table width="940 px" border="0px">
 +
                  <tr>
 +
                  <td width="470px">
 +
                    <div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c7/Tokyo_Tech_arabinose_fimB_discussion2.png" width="450px"/>
 +
                  </td>
 +
                  <td width="470px">                 
 +
                    <p class="text">Even though there is no <i>fim</i> switch(wild-type) in the plasmid of Positive control 2, similar increase in fluorescence intensity dependent on the expression of FimB(wild-type) was found in our Positive control 2 (Fig. 3-4-4-2) This unpredictable increase in fluorescence intensity is caused by the decrease of dilution rate of proteins inside cells. The FimB(wild-type) expression, dependent on the arabinose induction, inhibits cell division that decreases protein concentration inside the individual cells. Therefore, the concentration of GFP in individual cell increases. </p>
 +
                  </td>
 +
                  </tr>
 +
                  <td width="470px">
 +
                    <h4 align="center" class="fig"><strong>Fig. 3-4-4-2.</strong>&nbsp;The histogram of Positive control 2</h4></td>
 +
                  </td>
 +
                  </tr>
 +
                  <tr>
 +
                  <td width="470px">&nbsp;</td>
 +
                </table><br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 
           <h2 id="Materials" class="smalltitle">5. Materials and Methods</h2>
 
           <h2 id="Materials" class="smalltitle">5. Materials and Methods</h2>
 
               <h3 id="Const" class="sub5">5.1.  Construction</h3>
 
               <h3 id="Const" class="sub5">5.1.  Construction</h3>
Line 141: Line 232:
 
          <p class="text2">All the samples were DH5alpha strain.</p>
 
          <p class="text2">All the samples were DH5alpha strain.</p>
 
               <h3 class="sub5">-Plasmids</h3>
 
               <h3 class="sub5">-Plasmids</h3>
          <p class="text2">A. P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(pSB6A1)+ <i>fim</i> switch[default ON](wild-type)_<i>gfp</i> (pSB3K3)</p>
+
          <p class="text2">(1) P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + <i>fim</i> switch[default ON](wild-type)_<i>gfp</i> (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 153: Line 244:
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">B. P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(pSB6A1)+ <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i> (pSB3K3)
+
          <p class="text2">(2) P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i> (pSB3K3)
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 165: Line 256:
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">C. Posigive control1:(pSB6A1)+ <i>fim</i> switch[default ON](wild-type)_<i>gfp</i>(pSB3K3)</p>
+
          <p class="text2">(3) Posigive control 1 : (pSB6A1) + <i>fim</i> switch[default ON](wild-type)_<i>gfp</i>(pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 177: Line 268:
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">D. Negative control2: (pSB6A1)+ <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>(pSB3K3)</p>
+
          <p class="text2">(4) Negative control 1 : (pSB6A1) + <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>(pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 189: Line 280:
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">E. Pbad/araC-<i>fimB</i> (pSB6A1) +J23119 promoter_<i>gfp</i> (pSB3K3)…Positive control2</p>
+
          <p class="text2">(5) Positive control 2 : P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + Pcon_<i>gfp</i> (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 201: Line 292:
 
       </tr>
 
       </tr>
 
       </table>
 
       </table>
          <p class="text2">F. Pbad/araC-<i>fimB</i> (pSB6A1) +promoter less <i>gfp</i> (pSB3K3)…Negative control2</p>
+
          <p class="text2">(6) Negative control 2 : P<sub>BAD/<i>araC</i></sub>_<i>fimB</i>(wild-type) (pSB6A1) + promoter less_<i>gfp</i> (pSB3K3)</p>
 
                 <table width="980 px" border="0px">
 
                 <table width="980 px" border="0px">
 
                   <tr>
 
                   <tr>
Line 214: Line 305:
 
       </table>
 
       </table>
 
               <h3 id="Protocol" class="sub5">5.2. Assay Protocol</h3>
 
               <h3 id="Protocol" class="sub5">5.2. Assay Protocol</h3>
               <h3 id="Protol1" class="sub6">5.2.1. Arabinose dependent FimB expression</h3>
+
               <h3 id="Protol1" class="sub6">5.2.1. Arabinose dependent FimB(wile-type) expression</h3>
 
                 <p class="text2"></p>
 
                 <p class="text2"></p>
 
                   <p class="text3"></p>
 
                   <p class="text3"></p>
 
                     <p class="text4">
 
                     <p class="text4">
1. Prepare overnight cultures for the each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration of mass of glucose is 0.5 percent) at 37 ℃ for 12h.<br>
+
1. Prepare overnight cultures for each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration is 0.5 percent) at 37ºC, shaking at 180 rpm for 12h.<br>
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration of mass of glucose is 0.5 percent).<br>
+
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration is 0.5 percent).<br>
3. Grow the cells at 37 ℃ until the observed OD590 reaches 0.4 (Fresh Culture)<br>  
+
3. Incubate the cells at 37ºC, shaking at 180 rpm until the observed OD590 reaches 0.4 (Fresh Culture).<br>  
4. After incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25 ℃.<br>
+
4. After the incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25ºC. <br>
5. Remove the supernatant by using P1000 pipette.<br>
+
5. Remove the supernatant.<br>
6. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25 ℃ <br>
+
6. Suspend 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25ºC. <br>
7. Remove the supernatant by using P1000 pipette.<br>
+
7. Remove the supernatant.<br>
8. Take the samples, and centrifuge at 5000x g, 1 min, 25 ℃.<br>
+
8. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25ºC.<br>
9. Remove the supernatant by using P1000 pipette.<br>
+
9. Remove the supernatant.<br>
10. Add 1 mL of LB containing Amp and Kan, and suspend.<br>
+
10. Suspend the pellet in 1 mL of LB containing Amp and Kan.<br>
 
11. Add 30 microL of suspension in the following medium.<br>
 
11. Add 30 microL of suspension in the following medium.<br>
&nbsp;&nbsp;&nbsp;① 3 mL of LB containing Amp, Kan, glucose (final concentration of mass of glucose is 0.5 percent) and 30 microL of sterile water.<br>
+
&nbsp;&nbsp;&nbsp;①) 3 mL of LB containing Amp, Kan, glucose (final concentration is 0.5 percent) and 30 microL of sterile water.<br>
&nbsp;&nbsp;&nbsp;② 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)<br>
+
&nbsp;&nbsp;&nbsp;②) 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)<br>
&nbsp;&nbsp;&nbsp;③ 3 mL of LB containing Amp, Kan and 30 microL of 20 mM arabinose (final concentration of arabinose is 200 microM)<br>
+
&nbsp;&nbsp;&nbsp;③) 3 mL of LB containing Amp, Kan and 30 microL of 20 mM arabinose (final concentration of arabinose is 200 microM)<br>
&nbsp;&nbsp;&nbsp;④ 3 mL of LB containing Amp, Kan and 30 microL of 500 mM arabinose (final concentration of arabinose is 5 mM)<br>
+
&nbsp;&nbsp;&nbsp;④) 3 mL of LB containing Amp, Kan and 30 microL of 500 mM arabinose (final concentration of arabinose is 5 mM)<br>
&nbsp;&nbsp;&nbsp;※ As for C and D, the suspension were added only in medium ① and ④. <br>
+
&nbsp;&nbsp;&nbsp;※ As for (3) and (4), the suspension were added only in medium ① and ④. <br>
12. Grow the samples at 37 ℃ for 6.5 hours.<br>
+
12. Incubate the samples at 37ºC, shaking at 180 rpm for 6.5 hours. (Measure OD590 of all the samples every hour.)<br>
13. Measure OD590 of all the samples every hour.<br>
+
13. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4ºC.<br>
14. Start preparing the flow cytometer 1 h before the end of incubation.<br>
+
14. Remove the supernatant.<br>
15. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4℃.<br>
+
15. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)<br>
16. Remove the supernatant by using P1000 pipette.<br>
+
16. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
17. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)<br>
+
17. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)<br>
18. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
+
               <h3 id="Protol2" class="sub6">5.2.2. Supplemental experiments</h3>
19. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)<br>
+
               <h3 id="Protol2" class="sub6">5.2.2. FLA analysis</h3>
+
 
                 <p class="text2"></p>
 
                 <p class="text2"></p>
 
                   <p class="text3"></p>
 
                   <p class="text3"></p>
 
                     <p class="text4">
 
                     <p class="text4">
  
1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture (A,B,
+
1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture ((1)-①, (1)-③, (2)-① and (2)-③) of leftover as <a href="http://parts.igem.org/Help:Protocols/Miniprep">here</a>. <br>
,C and D) of leftover as here.(http://parts.igem.org/Help:Protocols/Miniprep) <br>
+
2. Turn on water bath to 42ºC.<br>
2. Turn on water bath to 42℃.<br>
+
3. Take competent DH5alpha strain from -80ºC freezer and leave at rest on ice.<br>
3. Take competent DH5alpha strain from -80℃ freezer and leave at rest on ice.<br>
+
4. Add 3 microL of each plasmids in a 1.5 mL tube.<br>
4. Add 3 µl of each plasmids in a 1.5 ml tube.<br>
+
5. Put 25 microL competent cell into each 1.5 mL tubes with plasmid.<br>
5. Put 25 µl competent cell into each 1.5 ml tubes with plasmid.<br>
+
 
6. Incubate on ice for 15 min.<br>
 
6. Incubate on ice for 15 min.<br>
7. Put tubes with DNA and competent cells into water bath at 42℃ for 30 seconds.<br>
+
7. Put tubes with DNA and competent cells into water bath at 42ºC for 30 seconds.<br>
 
8. Put tubes back on ice for 2 minutes.<br>
 
8. Put tubes back on ice for 2 minutes.<br>
9. Add 125 µl of SOC medium. Incubate tubes for 30 minutes at 37℃.<br>
+
9. Add 125 microL of SOC medium. Incubate tubes for 30 minutes at 37ºC.<br>
10. Make a 1:5 dilution in 150µl of fresh SOC medium.<br>
+
10. Make a 1:5 dilution in 150microL of fresh SOC medium.<br>
11. Spread about 100 µl of the resulting culture of LB plate containing kanamycin.<br>
+
11. Spread about 100 microL of the resulting culture of LB plate containing kanamycin.<br>
12. Incubate LB plate for 14-15 hours at 37℃. <br></p>
+
12. Incubate LB plate for 14-15 hours at 37ºC. <br>
 +
13. Set the plate reader to measure GFP.<br>
 +
14. Scan the each plates with the plate reader. (We used FujiFilm FLA-5100 Fluorescent Image Analyzer from FUJIFilm Life Science.)<br>
 +
15. Analyze the scanning data by changing the scale type (Bezier) and adjusting the range. (We analyzed by using the software, Multi Gauge ver. 2.0 from FUJIFilm Life Science.)<br>
 +
16. Counted out the all colonies and those with fluorescence.<br>
 +
17. Prepare three overnight cultures for each sample in 3 mL of LB medium containing kanamycin (30 microg / mL) shaking at 180 rpm for 12h.<br>
 +
18. Miniprep each samples and ask DNA sequencing of each samples for Biomaterial Analysis Center, Technical Department.<br>
 +
</p>
  
 
                    
 
                    

Latest revision as of 00:38, 5 October 2015

FimB dependent fim switch state assay

  
  

1. Introduction

           
      

In order to enable a prisoner coli to randomly select its option between cooperation and defection, we noticed that a fim switch(wild-type), which can invert a promoter sequence bidirectionally in the presence of FimB(wild-type) recombinase, is the part we need (Fig. 3-4-1-1).

 

Fig. 3-4-1-1. In the presence of FimB(wild-type) recombinase, the fim switch which is a promoter containing repeated DNA sequence, is inverted at random.

      

For implementation of Decision making coli, we newly constructed plasmid, PBAD/araC_fimB(wild-type) (BBa_K1632012) that produces FimB(wild-type). We also prepared two other new plasmids, BBa_K1632007 and BBa_K1632008 (Fig. 3-4-1-2). BBa_K1632012 enables arabinose-inducible expression of FimB(wild-type). In BBa_K1632007 and BBa_K1632008, either [ON] or [OFF] fim switch(wild-type) is placed upstream of GFP coding sequence.

      

Fig.3-4-1-2. New plasmids we constructed to confirm the function of BBa_K1632012 plasmid for Decision making coli.

2. Summary of the Experiment

      

Our purpose is to confirm that FimB(wild-type) inverts the fim switch(wild-type) from [ON] state to[OFF] state and from [OFF] state to [ON] state (Fig.3-4-2-1). We prepared six plasmids below. We measured the fluorescence intensity from the GFP expression in the presence of arabinose. From the results, we confirmed that our fim switch(wild-type) is inverted from [ON] state to [OFF] state and [OFF] state to [ON] state. From the results we also confirmed our fim switch(wild-type) is not inverted by the endogenous FimB and FimE and that FimB(wild-type) expression doesn’t affect the GFP expression. In order to confirm inversion more precisely, we also show the percentage of [ON] state with induction by arabinose and without induction. Also we show inversion in the level of DNA sequencing.

(1) PBAD/araC_fimB(wild-type) (pSB6A1) + fim switch[default ON](wild-type)_gfp (pSB3K3)
(2) PBAD/araC_fimB(wild-type) (pSB6A1) + fim switch[default OFF](wild-type)_gfp (pSB3K3)
(3) Positive control 1 : (pSB6A1)+ fim switch[default ON](wild-type)_gfp (pSB3K3)
(4) Negative control 1 : (pSB6A1)+ fim switch[default OFF](wild-type)_gfp (pSB3K3)
(5) Positive control 2 : PBAD/araC_fimB(wild-type) (pSB6A1) + Pcon_gfp (pSB3K3)
(6) Negative control 2 : PBAD/araC_fimB(wild-type) (pSB6A1) + promoter less_gfp (pSB3K3)

Fig.3-4-2-1. Plasmids for the experiment of FimB dependent fim switch state assay

3. Results

3.1. Arabinose-dependent FimB(wild-type) expression

      

We tried to confirm that the fim switch is bidirectically inverted in the presence of FimB(wild-type) by using GFP as a reporter, under 4 different concentrations of arabinose. In the medium with 0 M arabinose, we supplemented the medium with 0.5 percent glucose in order to repress the leakage in the PBAD/araC promoter. Fig. 3-4-3-1 shows the histograms of the samples measured by the flow cytometer. In the results of the reporter cell (1), when the induction of FimB(wild-type) expression increases, the fluorescence intensity decreases. From this fact, we confirmed that the fim switch(wild-type) is inverted from [ON] state to [OFF] state by FimB(wild-type). From the result of the reporter cell (2), when the expression amount of FimB(wild-type) increases, the expression amount of GFP in the reporter cell (2) increases. From this fact, we confirmed that the fim switch(wild-type) is inverted from [OFF] state to [ON] state by FimB(wild-type). From the results of the two reporter cells (1) and (2), we successfully confirmed that FimB(wild-type) inverts the fim switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state.
    The results of Positive control 1 and Negative control 1 confirmed that the endogenous FimB and FimE did not invert our fim switch(wild-type). Also, the result of Negative control 2, indicates that the expression of FimB(wild-type) do not affect GFP expression. The reason the fluorescence intensity of the Positive control 2 is increasing in proportion to the arabinose concentration is described in 4. Discussion section.

Fig. 3-4-3-1. The histograms of the samples measured by flow cytometer

3.2. Supplemental experiments

To confirm our results that our FimB(wild-type) inverted the fim switch(wild-type) further, after scattering the samples on a plate, we counted the number of colonies in which GFP is expressed and the colonies which GFP is not expressed. After measurement of flow cytometer, we minipreped the cells culture of leftover and got plasmid mixture which contain pSB6A1 and pSB3K3 in each samples. For example, in sample (1), PBAD/araC_fimB(wild-type) (pSB6A1) + fim switch[default ON](wild-type)_gfp (pSB3K3), pSB6A1 represents PBAD/araC_FimB and pSB3K3 represent fim swtich[default ON](wild-type)_gfp and fim switch[default OFF](wild-type)_gfp. E. coli DH5alpha was transformed with the plasmid mixture and cultured on LB plate containing kanamycin and glucose. As a result, E. coli which at least have pSB3K3 containing fim switch[default ON]_gfp or fim switch[default OFF]_gfp form colonies. Some colonies may have both pSB3K3 and pSB6A1 plasmid. However, the fim switch(wild-type) is not inverted by the leak of recombinase because glucose repress araC that activates expression of recombinase.

                

Fig. 3-4-3-2.  Determination of percentage of [ON] state and colony formation using plasmid mixture extracted cell expressing FimB.



The state of fim switch either [ON] or [OFF] in colonies is evaluated from fluorescence. Thus, colonies which contain fim switch[default ON] expressed GFP. On the other hand, colonies which contain fim switch[default OFF] do not express GFP. Fluorescence intensity were measured by plate reader. We also counted out the all colonies and those with fluorescence. In the results of the reporter cell (1), when inducing the expression of FimB(wild-type), the percentage of [ON] state decreased. Furthermore, from the results of the reporter cell (2), when inducing the expression of FimB(wild-type), the percentage of [ON] state increased. From the results of the two reporter cells (1) and (2), we successfully confirmed that the fimB protein inverts the fim switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state (Fig. 3-4-3-2). This result was consistent with the histograms (Fig. 3-4-3-3).

                

Fig. 3-4-3-3. DNA sequencing results of fim switch.

Also, we incubated the colonies with fluorescence and those without fluorescence. We minipreped cell culture and asked DNA sequencing of each samples. Sequence complementarity in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all samples (Fig. 3-4-3-3).

4. Discussion

When the concentration of FimB(wild-type) increased by increasing concentration of arabinose, we confirmed that the fluorescence intensity decreased in both [ON] to [OFF] process and [OFF] to [ON] process.
   The result of the reporter cell (2) shows that when the concentration of arabinose is increased to 0〜20 microM, the fluorescence intensity increases. This shows the function of FimB(wild-type) inverting the fim switch(wild-type) from [OFF] state to [ON] state. However, when the arabinose concentration is excess (5mM), the fluorescence intensity decreases (Fig. 3-4-4-1). According to [1], this is caused by the excess increase in the inversion rate of the fim switch(wild-type). When the inversion rate is too high, there is not enough time for transcription initiation. Consequently, GFP expression decreases.

 

Fig. 3-4-4-1. The histogram of reporter cell (2)


Even though there is no fim switch(wild-type) in the plasmid of Positive control 2, similar increase in fluorescence intensity dependent on the expression of FimB(wild-type) was found in our Positive control 2 (Fig. 3-4-4-2) This unpredictable increase in fluorescence intensity is caused by the decrease of dilution rate of proteins inside cells. The FimB(wild-type) expression, dependent on the arabinose induction, inhibits cell division that decreases protein concentration inside the individual cells. Therefore, the concentration of GFP in individual cell increases.

Fig. 3-4-4-2. The histogram of Positive control 2

 

5. Materials and Methods

5.1. Construction

-Strain

      

All the samples were DH5alpha strain.

-Plasmids

      

(1) PBAD/araC_fimB(wild-type) (pSB6A1) + fim switch[default ON](wild-type)_gfp (pSB3K3)

Fig. 3-4-5-1.

      

(2) PBAD/araC_fimB(wild-type) (pSB6A1) + fim switch[default OFF](wild-type)_gfp (pSB3K3)

Fig. 3-4-5-2.

      

(3) Posigive control 1 : (pSB6A1) + fim switch[default ON](wild-type)_gfp(pSB3K3)

Fig. 3-4-5-3.

      

(4) Negative control 1 : (pSB6A1) + fim switch[default OFF](wild-type)_gfp(pSB3K3)

Fig. 3-4-5-4.

      

(5) Positive control 2 : PBAD/araC_fimB(wild-type) (pSB6A1) + Pcon_gfp (pSB3K3)

Fig. 3-4-5-5.

      

(6) Negative control 2 : PBAD/araC_fimB(wild-type) (pSB6A1) + promoter less_gfp (pSB3K3)

Fig. 3-4-5-6.

5.2. Assay Protocol

5.2.1. Arabinose dependent FimB(wile-type) expression

1. Prepare overnight cultures for each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration is 0.5 percent) at 37ºC, shaking at 180 rpm for 12h.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration is 0.5 percent).
3. Incubate the cells at 37ºC, shaking at 180 rpm until the observed OD590 reaches 0.4 (Fresh Culture).
4. After the incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25ºC.
5. Remove the supernatant.
6. Suspend 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25ºC.
7. Remove the supernatant.
8. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25ºC.
9. Remove the supernatant.
10. Suspend the pellet in 1 mL of LB containing Amp and Kan.
11. Add 30 microL of suspension in the following medium.
   ①) 3 mL of LB containing Amp, Kan, glucose (final concentration is 0.5 percent) and 30 microL of sterile water.
   ②) 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)
   ③) 3 mL of LB containing Amp, Kan and 30 microL of 20 mM arabinose (final concentration of arabinose is 200 microM)
   ④) 3 mL of LB containing Amp, Kan and 30 microL of 500 mM arabinose (final concentration of arabinose is 5 mM)
   ※ As for (3) and (4), the suspension were added only in medium ① and ④.
12. Incubate the samples at 37ºC, shaking at 180 rpm for 6.5 hours. (Measure OD590 of all the samples every hour.)
13. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4ºC.
14. Remove the supernatant.
15. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)
16. Dispense all of each suspension into a disposable tube through a cell strainer.
17. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)

5.2.2. Supplemental experiments

1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture ((1)-①, (1)-③, (2)-① and (2)-③) of leftover as here.
2. Turn on water bath to 42ºC.
3. Take competent DH5alpha strain from -80ºC freezer and leave at rest on ice.
4. Add 3 microL of each plasmids in a 1.5 mL tube.
5. Put 25 microL competent cell into each 1.5 mL tubes with plasmid.
6. Incubate on ice for 15 min.
7. Put tubes with DNA and competent cells into water bath at 42ºC for 30 seconds.
8. Put tubes back on ice for 2 minutes.
9. Add 125 microL of SOC medium. Incubate tubes for 30 minutes at 37ºC.
10. Make a 1:5 dilution in 150microL of fresh SOC medium.
11. Spread about 100 microL of the resulting culture of LB plate containing kanamycin.
12. Incubate LB plate for 14-15 hours at 37ºC.
13. Set the plate reader to measure GFP.
14. Scan the each plates with the plate reader. (We used FujiFilm FLA-5100 Fluorescent Image Analyzer from FUJIFilm Life Science.)
15. Analyze the scanning data by changing the scale type (Bezier) and adjusting the range. (We analyzed by using the software, Multi Gauge ver. 2.0 from FUJIFilm Life Science.)
16. Counted out the all colonies and those with fluorescence.
17. Prepare three overnight cultures for each sample in 3 mL of LB medium containing kanamycin (30 microg / mL) shaking at 180 rpm for 12h.
18. Miniprep each samples and ask DNA sequencing of each samples for Biomaterial Analysis Center, Technical Department.

6. Reference

      

1. Hung M. et al. (2014) Modulating the frequency and bias of stochastic switching to control phenotypic variation. Nat Commun 5:4574. doi:10.1038/ncomms5574

      

2. Timothy S. Ham et al. (2006) A Tightly Regulated Inducible Expression System Utilizing the fim Inversion Recombination Switch. Biotechnol Bioeng 94(1):1-4