Difference between revisions of "Team:China Tongji/Safety"

Line 1: Line 1:
 
{{China_Tongji_Head}}
 
{{China_Tongji_Head}}
 +
{{China_Tongji_Content}}
  
 
<html>
 
<html>
 
<head>
 
<head>
<style type="text/css">
 
  
#content {
+
<script type="text/javascript">
background:#eee;
+
margin-top:-20px;
+
padding-top:85px;
+
/* 颜色左右渐变 */
+
background-image: -webkit-linear-gradient(left,#ddd,#fff,#ddd)
+
}
+
  
.myContent{
+
jQuery(document).ready(function($){
width: 1000px;
+
$('#listProjectDesign').click(function(){$('html,body').animate({scrollTop: $('#ProjectDesign').offset().top-78}, 800);});  
margin: 0px auto;
+
$('#listLabWork').click(function(){$('html,body').animate({scrollTop: $('#LabWork').offset().top-78}, 800);});  
min-height: 550px;
+
$('#listShipment').click(function(){$('html,body').animate({scrollTop: $('#Shipment').offset().top-78}, 800);});  
padding: 0px;
+
});
font-family: "Times New Roman",Georgia, Times, serif;
+
}
+
  
#mainContent{
+
window.onscroll = function(){
width:100%;
+
    var t = document.documentElement.scrollTop || document.body.scrollTop;  
}
+
    var contentList = document.getElementById( "contentList" );
#mainContent .titleOne{
+
    if( t >= 200 ) {
margin-top:15px;
+
        contentList.style.position = "fixed";
text-align: left;
+
contentList.style.top = "78px";
font-size: 30px;
+
    } else {
font-family: Verdana, Tahoma, Arial, Helvetica;
+
        contentList.style.position = "static";
font-weight: bolder;
+
    }
line-height: 55px;
+
color:#333;
+
}
+
#mainContent .contentP{
+
text-align: justify;
+
text-indent: 2%;
+
font-size: 18px;
+
font-family: "Times New Roman",Georgia, Times, "Book Antiqua","MS Serif";
+
text-decoration: none;
+
}
+
#mainContent .divider{
+
margin-top:15px;
+
width:100%;
+
height:3px;
+
background:#5E5E1C;
+
}
+
.dividerNone{
+
clear:both;
+
}
+
  
/* 滚动图片样式*/
+
var LabWorkST = document.getElementById("LabWork").offsetTop;
#oneMorePic{
+
var ShipmentST = document.getElementById("Shipment").offsetTop;
width: 100%;
+
height: 350px;
+
background:url(https://static.igem.org/mediawiki/2015/c/c9/China_Tongji-homePicture-1.png);
+
margin: 20px 0px;
+
border:solid 2px #666;
+
}
+
.picBackground{
+
clear:both;
+
position:absolute;
+
}
+
.picMove{
+
width:50px;
+
height:50px;
+
opacity:0.7;
+
margin-top:160px;
+
}
+
#moveLeft{
+
float:left;
+
margin-left:20px;
+
}
+
#moveRight{
+
float:right;
+
margin-right:20px;
+
}
+
.button:hover{
+
cursor:pointer;
+
opacity:1;
+
}
+
.picPosition{
+
position:absolute;
+
margin-left:480px;
+
margin-top:320px;
+
z-index:100;
+
}
+
.picPositionIndex{
+
width:15px;
+
height:15px;
+
opacity:0.7;
+
margin:5px;
+
}
+
 
 
/* 标题按钮样式 */
+
if( t<LabWorkST-78 ){
.titleButton{
+
document.getElementById("listProjectDesign").style.color = "#F0F";
float: left;
+
}else{
margin:5px 0px;
+
document.getElementById("listProjectDesign").style.color = "#000";
 +
}
 +
 +
if( (t>=LabWorkST-78) ){
 +
document.getElementById("listLabWork").style.color = "#F0F";
 +
if(t>=ShipmentST-78){
 +
document.getElementById("listLabWork").style.color = "#000";
 +
}}else{
 +
document.getElementById("listLabWork").style.color = "#000";
 +
}
 +
 +
if( t>=ShipmentST-78 ){
 +
document.getElementById("listShipment").style.color = "#F0F";
 +
}else{
 +
document.getElementById("listShipment").style.color = "#000";
 +
}
 
}
 
}
 +
</script>
  
#buttonProject{
 
background: url(https://static.igem.org/mediawiki/2015/8/84/China_Tongji-project.png) no-repeat;
 
}
 
#buttonNotebook{
 
background: url(https://static.igem.org/mediawiki/2015/b/be/China_Tongji-notebook.png) no-repeat;
 
}
 
#buttonAchivement{
 
background: url(https://static.igem.org/mediawiki/2015/3/3b/China_Tongji-achivement.png) no-repeat;
 
}
 
#buttonOutreach{
 
background: url(https://static.igem.org/mediawiki/2015/0/09/China_Tongji-outreach.png) no-repeat;
 
}
 
#buttonSafety{
 
background: url(https://static.igem.org/mediawiki/2015/3/37/China_Tongji-safety.png) no-repeat;
 
}
 
.titleButton a{
 
font-family: Tahoma, Arial, Helvetica;
 
font-size: 26px;
 
font-weight: bold;
 
color: #333;
 
display:block;
 
width:200px;
 
height:172px;
 
text-align: center;
 
padding-top:28px;
 
/* for IE */
 
filter:alpha(opacity=80);
 
/* CSS3 standard */
 
  opacity:0.80;
 
}
 
.titleButton a:hover{
 
filter:alpha(opacity=1);
 
opacity:1;
 
text-decoration: none;
 
}
 
 
 
 
.videoWrapper{
 
background-color:#5E5E1C;
 
padding:5px;
 
}
 
 
 
</style>
 
 
</head>
 
</head>
  
Line 205: Line 109:
  
 
<!--content start-->
 
<!--content start-->
 
+
<div class="bigName">
 +
<p align="left">Safety</p>
 +
</div>
  
 
<div class="myContent">
 
<div class="myContent">
 +
<div id="contentList">
 +
        <li class="listOne"><p id="listProjectDesign">Project Design</p></li>
 +
        <li class="listOne"><p id="listLabWork">Lab Work</p></li>
 +
        <li class="listOne"><p id="listShipment">Shipment</p></li>
 +
    </div>
 
     <div id=mainContent>
 
     <div id=mainContent>
 
     <!-- maincontent start here -->
 
     <!-- maincontent start here -->
         <!-- 滚动图片 -->
+
         <p class="titleOne" id="ProjectDesign">1. Project Design</p>  
      <div id="oneMorePic">
+
        <p class="contentP">
        <img class="button picMove" id="moveLeft" src="https://static.igem.org/mediawiki/2015/d/d9/China_Tongji-picLeftMove.png">
+
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
            <img class="button picMove" id="moveRight" src="https://static.igem.org/mediawiki/2015/f/f3/China_Tongji-picRightMove.png">
+
        <center><img class="contentImg" src="https://static.igem.org/mediawiki/2015/5/57/China_Tongji_team-logo-300px.png" ></center>
            <div class="picPosition">
+
         <p class="imgName" align="center">Figure 1. Schematic demonstration of HIV</p>
            <img class="button picPositionIndex" src="https://static.igem.org/mediawiki/2015/2/2c/China_Tongji-picPosition.png">
+
         <p class="contentP">
                <img class="button picPositionIndex" src="https://static.igem.org/mediawiki/2015/2/2c/China_Tongji-picPosition.png">
+
         We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to <span style="font-weight:bold;">adapt</span> to environmental change. The basic idea is to rewire the connections between parts and devices to <span style="font-weight:bold;">implement multiple functions</span> with the help of the site-specific recombination systems.</p>
            </div>
+
        <p class="contentP">
 
+
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
         </div>
+
         <p></p><div class="divider"></div>
        <!-- 一级标题块 -->
+
        <div class="titleOneBlock">
+
        <div class="titleButton"><a id="buttonProject" href="https://2015.igem.org/Team:China_Tongji/Project">Project</a></div>
+
          <div class="titleButton"><a id="buttonNotebook" href="https://2015.igem.org/Team:China_Tongji/Notebook">Notebook</a></div>
+
          <div class="titleButton"><a id="buttonAchivement" href="https://2015.igem.org/Team:China_Tongji/Achivement">Achivement</a></div>
+
          <div class="titleButton"><a id="buttonOutreach" href="https://2015.igem.org/Team:China_Tongji/Outreach">Outreach</a></div>
+
          <div class="titleButton"><a id="buttonSafety" href="https://2015.igem.org/Team:China_Tongji/Safety">Safety</a></div>
+
         </div>
+
        <!-- 项目介绍 -->
+
      <div class="dividerNone"></div>
+
    <p class="titleOne" id="ProjectIntroduction">Project Introduction</p> 
+
         <div class="divider"></div>
+
    <p class="contentP">In our project, we will use the technology of optogenetic and use light of different wave produced by the special light source assembled by ourselves to control the moving of C.elegans, construct a movement controlling system and bulid an amusement park of C.elegans.</p>
+
<p class="contentP">We will try to design our special parts and express channalrhodopsin in specific C.elegans' neurons. To accomplish our goals to express channalrhodopsin in single neuron, we make the use of cre- loxp system and the overlapping of promoters. We not only use the traditional channalrhodopsin,chR2,but also try to express the novel channelrhodopsin, Blink, and other fancy channelrhodopsins which have never been tested in C.elegans.</p>
+
<p class="contentP">And we will also get some parts and assemble those parts into a new equipment which can serves as the light source of our experiment.Then we will use computer controlling that lightsource to change the light which can activate or suppress the channelrhodopsin. By doing that, we can try to control the behaviours of C.elegans such as moving forwards or twisting more effectively.</p>
+
<p class="contentP">What's more,we will express GFP,YFP,mcherry in E.coli. By combining the color of microorgasims and C.elegans, we want to construct some interesting scenes to form a C.elegans' fancy world.</p>
+
<p class="contentP">This technology will be helpful in the research on neuron's function and interaction. In the future, this technology may also be used in mechanical controlling system and the theraphy of movement defect.</p>
+
         <div class="divider"></div>
+
        <!-- 视频欣赏 -->
+
    <p class="titleOne" id="VideoAppreciation">Video Appreciation</p>  
+
    <div class="videoWrapper">
+
            <video controls width="990">
+
                <source src="https://static.igem.org/mediawiki/2015/3/36/Tongji_University_promotional_video_2011.mp4" type="video/mp4" />Your browser does not support the video tag.
+
            </video>
+
  </div>      
+
 
          
 
          
 +
        <p class="titleOne" id="LabWork">2. Lab Work</p>
 +
        <p class="contentP">
 +
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
        <center><img class="contentImg" src="https://static.igem.org/mediawiki/2015/2/20/China_Tongji_iGEM_logo.png" ></center>
 +
        <p class="imgName" align="center">Figure 2. China_Tongji_iGEM_logo</p>
 +
        <p class="contentP">
 +
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 +
        <p></p><div class="divider"></div>       
 +
 +
<p class="titleOne" id="Shipment">3. Shipment</p> 
 +
        <p class="contentP">
 +
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
        <center><img class="contentImg" src="https://static.igem.org/mediawiki/2015/2/20/China_Tongji_iGEM_logo.png" ></center>
 +
        <p class="imgName" align="center">Figure 2. China_Tongji_iGEM_logo</p>
 +
        <p class="contentP">
 +
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 
    
 
    
  </div>
+
</div>
 
</div>
 
</div>
  

Revision as of 20:11, 5 August 2015

close label

Safety

  • Project Design

  • Lab Work

  • Shipment

  • 1. Project Design

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Figure 1. Schematic demonstration of HIV

    We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to adapt to environmental change. The basic idea is to rewire the connections between parts and devices to implement multiple functions with the help of the site-specific recombination systems.

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

    2. Lab Work

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Figure 2. China_Tongji_iGEM_logo

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

    3. Shipment

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Figure 2. China_Tongji_iGEM_logo

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.