Difference between revisions of "Team:Dundee/Modeling/Fingerprints"

Line 1: Line 1:
 
<html>
 
<html>
 +
<style>body { text-align:center; min-width:800px; }
 +
#pagebox { text-align:left; width:800px; margin-left:auto; margin-right:auto; }
 +
#pagebox2 { text-align:left; width:800px; margin-left:auto; margin-right:auto; }</style>
 
<script type="text/x-mathjax-config">
 
<script type="text/x-mathjax-config">
 
   MathJax.Hub.Config({
 
   MathJax.Hub.Config({
Line 70: Line 73:
 
         </center>
 
         </center>
 
       </header>
 
       </header>
 
+
<font size="4">
 
+
<div id="pagebox">
  
 
<a class="anchor" id="fingerprint1"></a>
 
<a class="anchor" id="fingerprint1"></a>
Line 90: Line 93:
 
       </div>
 
       </div>
 
     </section>
 
     </section>
 +
</div>
 
<a class="anchor" id="selection"></a>
 
<a class="anchor" id="selection"></a>
 
     <section id="about" class="row1">     
 
     <section id="about" class="row1">     
Line 110: Line 114:
  
  
 
+
<div id="pagebox2">
  
  
Line 284: Line 288:
 
     </section>
 
     </section>
  
      
+
     </font>
 
+
  
 +
</div>
 
   </body>
 
   </body>
  

Revision as of 14:55, 12 August 2015

Fingerprint Aging

Analysis and Modeling

Overview

Lorem Ipsum.

Principal Component Analysis

Consider principal component analysis and how it was implemented.

Squalene Epoxide Model

Consider the binding between squalene epoxide and lanosterol synthase.

Principal Component Analysis

Lorem ipsum dolor sit amet, nostrud maiestatis quaerendum ne sed. Reque possit ne sea. Te dico labitur mediocritatem ius. Error timeam noluisse eos ad, eam ne magna meliore contentiones, nec ei volumus persecuti. Dicit animal definitionem et mel, nonumy tacimates nec in. Vis mucius periculis at. At est vidit scripserit repudiandae, agam porro sea ne. Sea et stet tibique praesent, vim et legere aperiri. Quo doming vocibus eleifend no. Cu vis partem graeci facilisis. Falli inciderint mei no. Assentior suscipiantur mea id. Vis quas electram prodesset cu, choro omnium conclusionemque an his. Vis latine equidem perfecto ad.

Click here to see MATLAB Code Back to Overview Back to Start of PCA

Squalene epoxide and Lanosterol Synthase Binding Model

Aim

The aim of a model describing the binding between squalene epoxide and lanosterol synthase is to find the optimum concentration and binding rates that we require for visual detection of squalene epoxide in the fingermark sample from the crime scene. The more squalene epoxide and lanosterol synthase binding the more likely it will be that squalene epoxide will be visually detected.

Results

These reactions can be described by the schematic:

$$ \ce{LS + SE<=>[K_{1}][K_{2}] PC ->[K_{3}] La}. $$

Where \(LS\) is the concentration of lanosterol synthase, \(SE\) is the concentration of squalene epoxide, \(PC\) is the concentration of the 1st intermdeiate, protosterol cation, and \(La\) is the concentration of lanosterol, the full complex. \(K_{1}\), \(K_{3}\) are the forward reaction rates, and \(K_{2}\) is the reverse reaction rate.

The initial concentration of SE was defined to be \(SE_{0}\) and two parameters of the system were defined as:

$$ \begin{equation*} \lambda=\frac{K_{1}}{K_{2}} SE_{0}, \qquad \gamma=\frac{K_{3}}{K_{2}}. \end{equation*} $$

Sensitivity analysis was performed to find the optimum values for the two parameters, \(\gamma\) and \(\lambda\), which give the highest concentration of the final complex, lanosterol.

Figure 1: Sensitivity Analysis for the Binding Parameters of Squalene Epoxide and Lanosterol Synthase Binding.

Method

Using the law of mass action (Guldeberg and Waage,1879) the binding reaction schematic was written as a system of ordinary differential equations (ODEs):

$$ \begin{eqnarray} \frac{dLS}{dt}&=&K_{2}PC - K_{1} LS \cdot SE \nonumber \\ \frac{dSE{dt}&=&K_{2}PC - K_{1} LS \cdot SE \nonumber\\ \frac{dPC}{dt}&=& K_{1} LS \cdot SE - K_{2} PC- K_{3}PC \\ \frac{dLa}{dt}&=&K_{3}PC \nonumber \end{eqnarray} $$

with initial conditions:

$$ \begin{eqnarray} LS(0)&=&LS_{0} \quad \mu M \nonumber \\ \nonumber SE(0)&=&SE_{0} \quad \mu M\\ PC(0)&=&0 \quad \mu M\\ La(0)&=&0 \quad \mu M \nonumber \end{eqnarray} $$

The parameters were estimated by considering the steady state of the system. Setting the left hand side of (1) to zero gives:

$$ \begin{eqnarray} K_{2} PC&=&K_{1} LS \cdot SE \nonumber \\ K_{1} LS \cdot SE&=&K_{2} PC - K_{3} PC. \end{eqnarray} $$

Rearranging (3) gives:

$$ \begin{equation} \frac{PC}{LS \cdot SE=\frac{K_{1}}{K_{2}} \end{equation} $$

Considering the first binding reaction, it was found that the total concentration of lanosterol synthase, \(LS\), will be equal to:

$$ \begin{equation} LST=LS+PC. \end{equation} $$

Now using (4) and (5) it can be written that:

$$ \begin{equation} \frac{LS}{LST}=\frac{1}{\frac{K_{1}}{K_{2}} SE_{0} + 1}. \end{equation} $$

It is known that the ratio between lanosterol synthase and squalene epoxide is 2.561:1 is required for binding, and that they bind at a 1:1 ratio (Boutaud, 1992). Therefore the ratio of free lanosterol synthase to total lanosterol synthase will be:

$$ \begin{equation} \frac{LS}{LST}=\frac{1.561}{2.561}. \end{equation} $$

By substituting (7) into equation (6) the ratio between \(K_{1}\) and \(K_{2}\) can be found:

$$ \begin{equation} \frac{K_{1}}{K_{2}}= 0.7810323048\quad \mu M^{-1}. \end{equation} $$

For (3), (6) and (7) can be used to find the ratio between \(K_{3}\) and \(K_{2}\):

$$ \begin{equation} \frac{K_{3}}{K_{2}}=1.000223733. \end{equation} $$

From Goodman's 1964 paper, it can be calculated that the expected initial concentration of squalene is: \(SE_{0}=\) 0.8202157402 \(\mu M\). It is then assumed that this will be a reasonable estimate for the initial concentration of squalene epoxide. Therefore, from (8) and (9) the estimated values for \(\lambda\) and \(\gamma\) are found to be:

$$ \begin{equation} \lambda=0.64061499, \qquad \gamma=1.000223733. \end{equation} $$

By running the ode23 solver over one hundred different values for both parameters, sensitivity analysis can be performed. The range of values has the mean as the estimated values, (10). The results are shown in Figure 1, where the centre of the plot represents the expected concentration of complex formed when the expected binding rates are used.

References
  • Boutaud, O., Dolis, D., & Schuber, F. (1992). Preferential cyclization of 2, 3 (S): 22 (S), 23-dioxidosqualene by mammalian 2, 3-oxidosqualene-lanosterol cyclase. Biochemical and biophysical research communications, 188(2), 898-904.
  • Goodman, D. S. (1964). Squalene in human and rat blood plasma. Journal of Clinical Investigation, 43(7), 1480.
Click here to see MATLAB Code Back to Top Back to Start of Model