Difference between revisions of "Team:Sherbrooke/Experiments"

Line 5: Line 5:
  
 
<h2>Projects modules</h2>
 
<h2>Projects modules</h2>
 +
<hr>
 
<ul>
 
<ul>
 
<li><a href="#MC96">MC96</a></li>
 
<li><a href="#MC96">MC96</a></li>
Line 13: Line 14:
 
<span id="MC96"> &nbsp; </span>
 
<span id="MC96"> &nbsp; </span>
 
<h2>MC96</h2>
 
<h2>MC96</h2>
 +
<hr>
 
<h3>Thermal experimentation</h3>
 
<h3>Thermal experimentation</h3>
 
<p>
 
<p>
Line 61: Line 63:
 
</tr>
 
</tr>
 
</table>
 
</table>
+
<a href="#MC96">Back to MC96</a>
 +
 
 +
 
 
<span id="MC1.5"> &nbsp; </span>
 
<span id="MC1.5"> &nbsp; </span>
 
<h2>MC1.5</h2>
 
<h2>MC1.5</h2>
 +
<hr>
 
<h3>Thermal experimentation</h3>
 
<h3>Thermal experimentation</h3>
  
Line 103: Line 108:
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
<a href="#MC1.5">Back to MC1.5</a>
 +
  
 
<h4>Trials protocols</h4>
 
<h4>Trials protocols</h4>
Line 110: Line 117:
 
</p>
 
</p>
  
 +
 +
<span id="MC1.5 Protocols"> &nbsp; </span>
 +
<h4>Projects modules</h4>
 +
<ul>
 +
<li><a href="#MC1.5_Maintain_Cold">Maintaining a temperature below room temperature test</a></li>
 +
<li><a href="#MC1.5_Maintain_Hot">Maintaining a temperature over room temperature test</a></li>
 +
<li><a href="#MC1.5_to_Cold">Cooling speed test</a></li>
 +
<li><a href="#MC1.5_to_Hot">Heating speed test</a></li>
 +
</ul>
 +
 +
 +
<span id="MC1.5_Maintain_Cold"> &nbsp; </span>
 
<h5>Maintaining a temperature below room temperature test</h5>
 
<h5>Maintaining a temperature below room temperature test</h5>
 
<h6>Purpose</h6>
 
<h6>Purpose</h6>
Line 144: Line 163:
 
<li>Stop the fan power supply</li>
 
<li>Stop the fan power supply</li>
 
</ol>
 
</ol>
 +
<a href="#MC1.5 Protocols">Back to MC1.5 Protocols</a>
  
 +
 +
<span id="MC1.5_Maintain_Hot"> &nbsp; </span>
 
<h5>Maintaining a temperature over room temperature test</h5>
 
<h5>Maintaining a temperature over room temperature test</h5>
 
<h6>Purpose</h6>
 
<h6>Purpose</h6>
Line 179: Line 201:
 
<li>Stop the fan power supply</li>
 
<li>Stop the fan power supply</li>
 
</ol>
 
</ol>
 +
<a href="#MC1.5 Protocols">Back to MC1.5 Protocols</a>
  
 +
 +
<span id="MC1.5_to_Cold"> &nbsp; </span>
 
<h5>Cooling speed test</h5>
 
<h5>Cooling speed test</h5>
 
<h6>Purpose</h6>
 
<h6>Purpose</h6>
Line 217: Line 242:
 
<li>Repeats step 1 to 9 for cooling voltage of 15V and 16V </li>
 
<li>Repeats step 1 to 9 for cooling voltage of 15V and 16V </li>
 
</ol>
 
</ol>
 +
<a href="#MC1.5 Protocols">Back to MC1.5 Protocols</a>
 +
  
 
<span id="MethodCoolingVoltage"> &nbsp; </span>
 
<span id="MethodCoolingVoltage"> &nbsp; </span>
 
<h6> <font color="red">Theoretical method to determine the optimised cooling voltage </font></h6>
 
<h6> <font color="red">Theoretical method to determine the optimised cooling voltage </font></h6>
 +
<a href="#MC1.5 Protocols">Back to MC1.5 Protocols</a>
  
 +
<span id="MC1.5_to_Hot"> &nbsp; </span>
 
<h5>Heating speed test</h5>
 
<h5>Heating speed test</h5>
 
<h6>Purpose</h6>
 
<h6>Purpose</h6>
Line 255: Line 284:
 
<li>Stop the high current power supply </li>
 
<li>Stop the high current power supply </li>
 
</ol>
 
</ol>
 
+
<a href="#MC1.5 Protocols">Back to MC1.5 Protocols</a>
 +
</br>
 +
<a href="#MC1.5">Back to MC1.5</a>
 +
</br>
 +
<a href="#top_menu_under">Back to top</a>
  
 
<span id="TAC"> &nbsp; </span>
 
<span id="TAC"> &nbsp; </span>
 
<h2>TAC</h2>
 
<h2>TAC</h2>
 +
<hr>
  
  
 
         </div></div> <!--Closing tag for div id="mainContainer" and div id="contentContainer". Opening tag are in the template-->
 
         </div></div> <!--Closing tag for div id="mainContainer" and div id="contentContainer". Opening tag are in the template-->
 
</html>
 
</html>

Revision as of 22:56, 11 September 2015

Experiments & Protocols

Projects modules


 

MC96


Thermal experimentation

The only experimentations done are simulations because no prototype has been built yet.


Simulation

Thermal simulations have been done on the software COMSOL. These simulations have been used to verify the heat transfer of the aluminium mold of the modules, thus helping us improve their design. For the MC96, some simulation has been done on early design, but none on the final design, due to the impossibility to simulate heat pipes.

Simulation parameters
Parameters Values
Peltier element cooling power 120W
Peltier element heating power 500W
Air convective heat transfer coefficient 50W/(m2 ℃)
Isolation conductive heat transfer coefficient 5W/(m ℃)
Aluminium type 6061-t6
Aluminium conductive heat transfer coefficient 167W/(m ℃)
Aluminium specific heat capacity 0.896J/(g ℃)
Back to MC96  

MC1.5


Thermal experimentation

Simulation

Simulation parameters
Parameters Values
Peltier element cooling power 60W
Peltier element heating power 250W
Air convective heat transfer coefficient 50W/(m2 ℃)
Isolation conductive heat transfer coefficient 5W/(m ℃)
Aluminium type 6061-t6
Aluminium conductive heat transfer coefficient 167W/(m ℃)
Aluminium specific heat capacity 0.896J/(g ℃)
Back to MC1.5

Trials protocols

These are the protocol used to test the thermal characteristic of the MC1.5 prototype. These protocols have been tested on a single sub-module of a MC1.5 .

 

Projects modules

 
Maintaining a temperature below room temperature test
Purpose

Determine if the module temperature stability fits the specified of ±1.5℃, when the set temperature is below room temperature. Also, this test determines the voltage versus the set temperature relation.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier gnd and PS gnd to Peltier vcc)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
  5. Wait for the thermometer measure to stabilize for 20 second
Measurement
  1. Set the voltage of the high current power supply to 1V
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Note the thermometer measure and the voltage associated with it
  4. Repeats set 1, 2 and 3 and increased the voltage by 1V each time until the thermometer measure is below the specified lower limit (0℃)
  5. Stop the high current power supply
  6. Stop the fan power supply
Back to MC1.5 Protocols  
Maintaining a temperature over room temperature test
Purpose

Determine if the module temperature stability fits the specification of ±1.5℃, when the set temperature is over room temperature. Also, this test determines the voltage versus the set temperature relation.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier vcc and PS gnd to Peltier gnd)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
  5. Wait for the thermometer measure to stabilize for 20 second
Measurement
  1. Set the voltage of the high current power supply to 1V
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Note the thermometer measure and the voltage associated with it
  4. Repeats set 1, 2 and 3 and increased the voltage by 1V each time until the thermometer measure is over the specified upper limit (80℃)
  5. Stop the high current power supply
  6. Stop the fan power supply
Back to MC1.5 Protocols  
Cooling speed test
Purpose

Determine if the module cooling speed fits the specification of 0.5 to 1℃/s. Also, this test determines the optimal voltage to apply to cool the aluminium mold.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier vcc and PS gnd to Peltier gnd)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
Measurement
  1. Set the voltage of the high current power supply to reach 85℃
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Stop the high current power supply
  4. Invert connection between the Peltier element and the high current power supply
  5. Set the high current power supply to 15.5V (calculated by this method)
  6. Start the chronometer when the thermometer measure reach 80℃
  7. For each 10℃ temperature drop, note the timestamp until 0℃ is reached
  8. Stop the high current power supply
  9. Invert connection between the Peltier element and the high current power supply
  10. Repeats step 1 to 9 for cooling voltage of 15V and 16V
Back to MC1.5 Protocols  
Theoretical method to determine the optimised cooling voltage
Back to MC1.5 Protocols  
Heating speed test
Purpose

Determine if the module heating speed fits the specified 0.5 to 1℃/s.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier gnd and PS gnd to Peltier vcc)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
Measurement
  1. Set the voltage of the high current power supply to reach -5℃
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Stop the high current power supply
  4. Invert connection between the Peltier element and the high current power supply
  5. Set the high current power supply to 24V (Maximal voltage available for the Peltier element)
  6. Start the chronometer when the thermometer measure reach 0℃
  7. For each 10℃ temperature rise, note the timestamp until 80℃ is reached
  8. Stop the high current power supply
Back to MC1.5 Protocols
Back to MC1.5
Back to top  

TAC