PncB: nicotinic acid phosphorbosyl-transferase
Increasing the levels of NADH
Our goal was to boost electron production by increasing the concentration of electron carriers (i.e. NADH). To achieve this goal we decided to engineer E. coli with an enzyme that would provide more intracellular NAD+, and thus NADH[1].
PncB catalyzes one of the rate-limiting step in the NAD synthesis pathway. This gene is naturally found in E. coli and encodes for the enzyme NAPRTase (nicotinic acid phosphorbosyl- transferase) that catalyzes the formation of nicotinate mono-nucleotide, a direct precursor of NAD, from NA (nicotinic acid) [2] [3] [4].
Our device is controlled by an inducible arabinose promoter built by the Unitn iGEM team in 2012. PncB was extracted by E. coli genome, the illegal site PstI was removed, and it was placed in pSB1C3 (BBa_K1604030). Subsequently it was placed under the araC-pBAD promoter (BBa_K1604030).
Characterization
PncB is not toxic if overexpressed in E.coli
NEB10β transformed with BBa_K1604030 (araC-pBAD-pncB) or BBa_K731201 (i.e. araC-pBAD) were grown up to an OD of 0.6, splitted in two tubes of 23 mL each and induced with 5 mM of arabinose. Negative controls were not induced.
The OD (600 nm) was measured every 45 minutes for 5 hours. All measurements were done for 3 different biological samples and 3 technical measures.
Although the growth rate is slightly decreased, due to the cell stress when expressing pncB, the data indicate that this enzyme does not have toxicity effect on the cells.
PncB enhances NAD production by ~2.5 fold
Our goal was to demonstrate that pncB increased intracellular levels of NAD+and thus NADH . We quantified the levels of NAD+ by a colorimetric test that measures the levels of NAD indirectly by quantifying the concentration of NAD total (NAD + NADH) and NADH only. To make precise quantitation a standard curve with NADH was built. The test provides the ratio of NAD/NADH:
$\frac{NAD}{NADH} = \frac{NAD_{TOTAL} - NADH}{NADH}$
NADtotal = Amount of total NAD (NAD+NADH) in unknown sample (pmole) from standard curve.
NADH = Amount of NADH in unknown sample (pmole) from standard curve.
We started by looking at NAD+ after 6 hours of induction in LB. Colonies expressing pncB (BBa_K1604031) and the negative control (BBa_K731201) were grown in LB broth with chloramphenicol (CF). When an Optical Density (OD) of 0.6 (600nm) was reached, the cultures were centrifuged and resuspended in fresh LB medium, CF and 5mM of arabinose. After 6 hours of induction the OD (600nM) was measured and an aliquot of 1 mL of culture corresponding to 10^8 cells was centrifuged at 2000 rpm for 5 minutes and washed with cold PBS. The NAD and NADH levels were calculated with the Sigma NAD and NADH Quantification Kit (MAK037) following the technical bulletin.
BBa_K1604031 does increase NAD levels by 2.5 fold and NADH levels by 1.4 fold when expressed in NEB10β. Although we did see an enhancement in NAD levels, this did not correlate to a proportional boost in NADH levels. We plan in the future to add a NAD reducing enzyme and to give a medium able to enhance the cell metabolism to further increase NADH intracellular levels.
New Tests?
At this point we tested the performance of pncB in different conditions: as in Terrific Broth, with the addiction of Nicotinic Acid and in anaerobic condition. This time the cells transformed with pncB and araC-pBAD were grown and induced with arabinose for a longer time (20 hours). The test was repeated in aerobic and anaerobic conditions and with a rich culture media (Terrific Broth) in aerobic conditions. The effect of nicotinic acid, the precursor used by pncB was also analyzed in the presence of oxygen.
Why Terrific broth?
Terrific Broth was used to accelerate the E.coli metabolism giving a more nutrient broth as this, with the ultimate goal of producing more NAD+.
Why Nicotinic Acid?
Nicotinic Acid (NA) is the molecule precursor of NAD+ and was supplemented in the media to provide more substrate for the enzyme.
Why anaerobic condition?
Anaerobic conditions were used to mimic the conditions in the Microbial Fuel Cell. To reach anaerobic conditions, after 5 hours of induction in Thermoshaker (37°C at 190 rpm shaking) 2 samples of pncB in LB and one of araC-pBAD were taken and put in sealed glass bottles with a rubber septum under anaerobic work station to keep samples without oxygen.
Subsequently after 20 hours of growth in Thermoshaker an OD (600nm) measure was taken at the spectrophotometer. 0,5 mL of cells corresponding to 10^8 were centrifuged and the supernatant was discarded. The test was done as described before following the technical bulletin. Was obtained a NADH standard curve comparable with the standard curve represented in figure 4 Panel A. Was used again Formula 1.
The plate was read with a spectrophotometer instrument at absorbance 450 nm. The measurements were taken after 0.5, 1, 2, 3, 4 hours to allow color development. The data shown are representative of the best measurement after 1 hour. For aerobic condition every data was taken considering 3 biological replicates and with 3 technical replicates.
To sum up...
Overexpression of the gene pncB enhances significantly the intracellular level of NAD+. The best data were obtained in anaerobic conditions where the increasing of NAD+ was of 13 fold. which are the conditions to be used in a Microbial Fuel Cell (Anode chamber is in anaerobic condition).
When Nicotinic acid was added in the medium there was a significant enhancement of NAD+ levels (1,5 fold versus pncB and 3,7 fold versus negative control). Also in Terrific broth condition there was an increasing in the NAD level (2,7 fold versus negative control in the same condition) In the future it will be interesting to measures NAD+ in anaerobic conditions with the presence of high levels of Nicotinic Acid.
New Part!
We successfully developed and submitted a new functional part: BBa_K1604031
More NAD produced
NAD production was enhanced in our cells by overexpressing the pncB gene, thanks to our novel part.
Towards the pMFC
Bacteria equipped with pncB produce more electrons and are thus ideal for our Microbial Fuel Cell environment.
Check out our Solar pMFC results to know more!
References
- Park, D. H., and J. G. Zeikus
"Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore."
Applied and Environmental Microbiology 66.4 (2000): 1292-297 - Berríos-Rivera, S.
"The Effect of NAPRTase Overexpression on the Total Levels of NAD, The NADH/NAD Ratio, and the Distribution of Metabolites in Escherichia Coli."
Metabolic Engineering 4.3 (2002): 238-47 - Wubbolts MG, Terpstra P, van Beilen JB, Kingma J, Meesters HA, Witholt B.
"Variation of cofactor levels in Escherichia coli. Sequence analysis and expression of the pncB gene encoding nicotinic acid phosphoribosyltransferase"
Journal of Biological Chemistry 1990 Oct 15;265(29):17665-72. - San, Ka-Yiu, George N. Bennett, Susana J. Berrı́os-Rivera, Ravi V. Vadali, Yea-Tyng Yang, Emily Horton, Fred B. Rudolph, Berna Sariyar, and Kimathi Blackwood.
"Metabolic Engineering through Cofactor Manipulation and Its Effects on Metabolic Flux Redistribution in Escherichia Coli."
Metabolic Engineering 4.2 (2002): 182-9