Difference between revisions of "Team:Tokyo Tech/Experiment/C4HSL-dependent growth assay"

Line 6: Line 6:
 
   <style type="text/css">
 
   <style type="text/css">
 
     table{
 
     table{
 +
          width: 940px;
 
           margin-left: auto;
 
           margin-left: auto;
 
           margin-right: auto;
 
           margin-right: auto;
 
           margin-top:0px;
 
           margin-top:0px;
 
           }
 
           }
 +
        td{
 +
          text-align: center;
 +
          }
 
   </style>
 
   </style>
 
   </head>
 
   </head>
 
   <body>
 
   <body>
 
     <div id="titlearea">
 
     <div id="titlearea">
       <h1>C4HSL-dependent growth assay</h1>
+
       <h1>3OC12HSL-dependent growth assay</h1>
 
     </div>
 
     </div>
 
     <div id="titlebottom">
 
     <div id="titlebottom">
     <h4 class="subtitle"><strong>コメント</strong></h4>
+
     <h4 class="subtitle"><strong>We have characterized previous parts.</strong></h4>
 
     </div>
 
     </div>
 
   <div class="texttop">
 
   <div class="texttop">
Line 24: Line 28:
 
  <div class="textarea">
 
  <div class="textarea">
 
     <h2 class="content2">contents</h2>
 
     <h2 class="content2">contents</h2>
       <h3 class="link"><a href="#Introduction">1. Introduction</a></h3>
+
       <h3 class="link"><a href="#1">1. Introduction</a></h3>
       <h3 class="link"><a href="#Summary">2. Summary of the Experiment</a></h3>
+
       <h3 class="link"><a href="#2">2. Summary of the Experiments</a></h3>
      <h3 class="link"><a href="#Results">3. Results</a></h3>                
+
      <h3 class="link2"><a href="#21">2.1  C4HSL-dependent CmR expression</a></h3>
       <h3 class="link"><a href="#Materials">4. Materials and Methods</a></h3>
+
      <h3 class="link2"><a href="#22">2.2  Adding an ssrA degradation tag</a></h3>
       <h3 class="link2"><a href="#Const">4.1. Construction</a></h3>
+
      <h3 class="link2"><a href="#23">2.3 Realizing the payoff matrix</h3>
       <h3 class="link2"><a href="#ID">4.2. Instruments and Date</a></h3>
+
      <h3 class="link3"><a href="#231">2.3.1  Seeking the ideal Cm concentration</a></h3>
        <h3 class="link3"><a href="#Inst">4.2.1. Instruments</a></h3>
+
      <h3 class="link3"><a href="#232">2.3.2  Payoff matrix with the new Cm concentration</a></h3>
        <h3 class="link3"><a href="#Date">4.2.2. Date</a></h3>
+
      <h3 class="link2"><a href="#24">2.4  Adding an ssrA degradation tag</a></h3>
       <h3 class="link2"><a href="#Protocol">4.3. Protocol</a></h3>
+
       <h3 class="link"><a href="#3">3. Result</a></h3>
        <h3 class="link3"><a href="#reader">4.3.1. Plate reader</a></h3>
+
       <h3 class="link2"><a href="#31">3.1  C4HSL-dependent CmR expression</a></h3>
        <h3 class="link3"><a href="#meter">4.3.2. Flow cytometer</a></h3>
+
       <h3 class="link2"><a href="#32">3.2 Adding an ssrA degradation tag</a></h3>
       <h3 class="link2"><a href="#How">4.4. How to process the data</a></h3>
+
      <h3 class="link2"><a href="#33">3.3  Realizing the payoff matrix</h3>
         <h3 class="link3"><a href="#Pr">4.4.1. Plate reader</a></h3>
+
      <h3 class="link3"><a href="#331">3.3.1 Seeking the ideal Cm concentration</a></h3>
         <h3 class="link3"><a href="#Flowcytometer">4.4.2. Flow cytometer</a></h3>
+
      <h3 class="link3"><a href="#332">3.3.2 Payoff matrix with the new Cm concentration</a></h3>
      <h3 class="link2"><a href="#Individuals">4.5. Individuals responsible for conducting Interlab study</a></h3>
+
       <h3 class="link2"><a href="#34">3.4  Adding an ssrA degradation tag</a></h3>
      <h3 class="link"><a href="#Reference">5. Reference</a></h3>
+
      <h3 class="link"><a href="#4">4. Discussion</a></h3>
 +
      <h3 class="link2"><a href="#41">4.1 The function of the ssrA tag</a></h3>
 +
      <h3 class="link2"><a href="#42">4.2 </a></h3>               
 +
      <h3 class="link"><a href="#5">5. Materials and Methods</a></h3>
 +
       <h3 class="link2"><a href="#51">5.1. Construction</a></h3>
 +
      <h3 class="link2"><a href="#52">5.2  Assay Protocol</a></h3>
 +
         <h3 class="link3"><a href="#521">5.2.1 C12HSL-dependent CmR expression assay</a></h3>
 +
         <h3 class="link3"><a href="#522">5.2.2  Chloramphenicol-dependent Growth Assay </a></h3>
 +
        <h3 class="link3"><a href="#523">5.2.3  Chloramphenicol-dependent Growth Assay with ssrA tag</a></h3>
 +
        <h3 class="link3"><a href="#523">5.2.4  C12HSL-dependent CmR expression assay ([Cm] = 75 microg/mL)</a></h3>    
 +
        <h3 class="link"><a href="#6">6. Reference</a></h3>
 
       <br>
 
       <br>
 
     </div>
 
     </div>
Line 49: Line 63:
 
     </div>
 
     </div>
 
   <div class="textarea">
 
   <div class="textarea">
           <h2 id="Introduction" class="smalltitle">1. Introduction</h2>
+
           <h2 id="1" class="smalltitle">1. Introduction</h2>
      <p class="text"></p>
+
      <p class="text">We designed a signal-dependent growth system by using signaling molecules and antibiotic resistance gene. In our prisoner’s dilemma game, our prisoner coli B needs 3OC12HSL to acquire chloramphenicol resistance (CmR). </p>
          <h2 id="Summary" class="smalltitle">2. Summary of the Experiment</h2>
+
<p class="text> Pcon_rhlR_TT_Plux_CmR (6A1) cell is an engineered E. coli that contains C4HSL-dependent chloramphenicol resistance gene product (CmR) generator and a constitutive RhlR generator. As a constitutive 3OC12HSL generator, we used Plac_lasI (3K3).</p>
      <p class="text"></p></li><br>
+
<p class="text">For construction of the C4HSL-dependent chloramphenicol resistance gene product (CmR) and 3OC12HSL production module, we constructed an improved parts Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632022). In our story, we confirmed the C4HSL-dependent growth by measuring the optical density.</p>
 
+
<p></p>
           <h2 id="Results" class="smalltitle">3. Results</h2>
+
<table><tbody><tr><td><img src="https://static.igem.org/mediawiki/2015/8/83/Tokyo_Tech_Growth_las1.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-1-1. Payoff matrix of Prisoner coli B</h4></td></tr></tbody></table>
          <p class="text2"></p>
+
<p></p>
                <table width="940 px" border="0px">
+
           <h2 id="2" class="smalltitle">2. Summary of the Experiment</h2>
                <tr>
+
<h2 id="21" class="sub5">2.1  C4HSL-dependent CmR expression</h2>
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/ca/Tokyo_Tech_Interlab_Table.3-7-3-1.png" width="940px"/>
+
<p></p>
                </td>
+
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-1. C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
                </tr>
+
<p></p>
                <tr>
+
<p class="text">We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cultures containing chloramphenicol (Fig. 3-2-2-1).In this experiment we prepared four plasmids, A, B, C, and D (Fig. 3-2-2-2). Right after the C4HSL induction, we added chloramphenicol into the medium containing Prisoner cell. We measured the optical density for about eight hours to estimate the concentration of the cell.</p>
                <td width="940px">
+
<p></p>
                <h4 align="center" class="fig"><strong>Table. 3-7-3-1.</strong>&nbsp;The absolute unit of fluorescence intensity</h4>
+
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
                <td>
+
<p></p>
                </tr>
+
<h3 id="23" class="sub5">2.3  Adding an ssrA degradation tag</h3>
      </table><br><br>
+
<p class="text">At the first stage of wet experiment, initially designed circuits showed leaky expression of CmR. Although “middle” and “high” growth inhibition is required for implementation of our payoff matrix (Fig. X), cells showed active growth even in the absence of AHL when the cell harboring our initially designed genetic circuit Pcon_rhlR_TT_Plux_CmR in Prisoner coli B (Fig. X). We could not obtain positive results in our modeling by increasing the concentration of Cm, which was one of our solutions. For precise implementation of our payoff matrix, suggestions from modeling allow us successfully improving the former plasmid by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632022)) (Fig.3-2-2-3). The ssrA tag helps to degrade the leaked CmR protein. The improved parts were used for construction of BBa_K1632022 circuit for 3OC12HSL inducible expression of CmR. Compared with circuits without ssrA tag BBa_K395160, our improved BBa_K1632022 indeed showed much slower growth which corresponds to “middle” growth inhibition (Fig.3-2-2-1). Furthermore, addition of 3OC12HSL recovers active cell growth which corresponds to “none” growth inhibition (Fig. 2-1). These results show the improved function of AHL-dependent CmR expression by measuring the optical density. (Projectより引用)</p>
<p class="text2">We calculated the arithmetic mean for each sample by adding the nine values of all three colonies and dividing it by 9.
+
<p></p>
We also calculated the standard deviation for each sample from the calculated arithmetic mean. (Table. 3-7-3-2)
+
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-3. The improved plasmid (BBa_K1632022) we constructed</h4></td></tr></tbody></table>
 +
<p></p>
 +
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-2-4. Plasmids for the experiment of C4HSL-dependent CmR expression</h4></td></tr></tbody></table>
 +
<p></p>
 +
<h2 id="23" class="sub5">2.3  Realizing the payoff matrix</h3>
 +
<h2 id="231" class="sub6">2.3.1  Seeking the ideal Cm Concentration</h3>
 +
<p class="text">Using the improved plasmids we constructed, our <i>E.coli</i> version payoff matrix is replicated through wet lab experiments. However, from the results shown in (Fig. X), the difference between “middle” growth inhibition and “high” growth inhibition was hardly observable. </p>
 +
<p class="text">The experiment was conduvted with different Chloramphenicol concentration (50, 75, 100microg/mL). Incubated in a culture medium without AHL, the difference in the growth rate was observed between the one producing AHL and the one not.
 
</p>
 
</p>
                <table width="940 px" border="0px">
+
<p></p>
                <tr>
+
<h2 id="232" class="sub5">2.3.2 Payoff matrix with the new Cm concentraion</h3>
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/a/a6/Tokyo_Tech_Interlab_Table.3-7-3-2.png" width="700px"/>
+
<p class="text">We found out that 75microg/mL is a Cm concentration good enough to realize the payoff matrix precisely. Using the new Cm concentration (75microg/mL), the “C12HSL-dependent CmR expression assay” (refer to 5-2-4) was run again to replicate a precise payoff matrix.</p>
                </td>
+
<p></p>
                </tr>
+
<h3 id="24" class="sub5">2.4  Decreasing the AHL(C4HSL) Concentration </h3>
                <tr>
+
<p></p>
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Table. 3-7-3-2.</strong>&nbsp;Arithmetic mean (Mean) and Standard deviation (S.D) of samples.</h4>
+
                <td>
+
                </tr>
+
      </table><br>
+
    <table width="980 px" border="0px">
+
      <tr>
+
      <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/c/c3/Tokyo_Tech_Interlab_Fig.3-7-3-2.png" width="530px"/>
+
      </td>
+
      </tr>
+
      <tr>
+
      <td width="980px">
+
      <h4 align="center" class="fig"><strong>Fig.3-7-3-2.</strong>&nbsp;Results from the plate reader
+
<br>The error bar represents the standard deviation for each sample calculated from the nine values of all three colonies.</h4>
+
      <td>
+
      </tr>
+
      </table><br><br>
+
              <h3 id="Flow" class="sub5">3-2. Flow cytometer</h3>
+
          <p class="text2">We measured the geometric mean of fluorescence intensity for each sample. The results are shown below (Table.3-7-3-3). We measured three colonies(#1〜3) three times (Technical replicate 1〜3) per each sample (Device1〜3,positive control and negative control).<br>
+
&nbsp;&nbsp;These results show that the intensity of fluorescence was in the following order, Device1>Device2>positive control>Device3>negative control. (Table. 3-7-3-4)(Figure. 3-7-3-3)<br>
+
&nbsp;&nbsp;These results are the same as the results from the measurement done by the plate reader.</p>
+
                <table width="940 px" border="0px">
+
                <tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/8/80/Tokyo_Tech_Interlab_Table.3-7-3-3.png" width="940px"/>
+
                </td>
+
                </tr>
+
                <tr>
+
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Table. 3-7-3-3.</strong>&nbsp;Results from the flow cytometer</h4>
+
                <td>
+
                </tr>
+
      </table><br>
+
                <table width="940 px" border="0px">
+
                <tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/0a/Tokyo_Tech_Interlab_Table.3-7-3-4.png" width="700px"/>
+
                </td>
+
                </tr>
+
                <tr>
+
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Table. 3-7-3-4.</strong>&nbsp;Arithmetic mean (Mean) and Standard deviation (S.D) of samples.</h4>
+
                <td>
+
                </tr>
+
      </table><br>
+
    <table width="980 px" border="0px">
+
      <tr>
+
      <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/3e/Tokyo_Tech_Interlab_Fig.3-7-3-4.png" width="530px"/>
+
      </td>
+
      </tr>
+
      <tr>
+
      <td width="980px">
+
      <h4 align="center" class="fig"><strong>Fig.3-7-3-3.</strong>&nbsp;Results from the flow cytometer <br>The error bar represents the standard deviation for each sample calculated from the nine values of all three colonies.
+
</h4>
+
      <td>
+
      </tr>
+
      </table><br><br>
+
  
          <h2 id="Materials" class="smalltitle">4. Materials and Methods</h2>
+
<h2 id="3" class="smalltitle">3. Results</h2>
              <h3 id="Const" class="sub5">4.1. Construction</h3>
+
<h2 id="31" class="sub5">3.1  C4HSL-dependent CmT expression</h2>
              <h3 class="sub5">-Strain</h3>
+
<p class="text">We tested four types of culture condition which contains different Cm concentration (0 and 100 microg/mL) and different AHL concentration (0 and 5 nM). Fig. 3-2-3-1, Fig. 3-2-3-2, Fig. 3-2-3-3, Fig. 3-2-3-4 show the condition in the absence and presence of Cm, respectively. Regardless of the presence of Cm, every cell grew in the culture medium even without C4HSL.</p>
          <p class="text2">All the samples were DH5alpha strain.</p>
+
<p class="text" style="margin-left: 30px;"> Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)</p>
              <h3 class="sub5">-Plasmids</h3>
+
<p></p>
          <p class="text2">Device 1: J23101 + I13504(pSB1C3)
+
<table><tbody><tr><td><img src="https://static.igem.org/mediawiki/2015/d/d1/Tokyo_Tech_Growth_las3231.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-3-1. Cooperating Prisoner <i>coli</i> B’s growth with Cm</h4></td></tr></tbody></table>
                <table width="980 px" border="0px">
+
<p></p>
                  <tr>
+
<p class="text" style="margin-left: 30px;"> Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27,28)</p>
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1c/Tokyo_Tech_Device1.png"/>
+
<p></p>
      </td>
+
<table><tbody><tr><td><img src="https://static.igem.org/mediawiki/2015/e/e5/Tokyo_Tech_Growth_las3232.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig.3-2-3-2. Defecting Prisoner coli B’s growth with Cm</h4></td></tr></tbody></table>
      </tr>
+
<p></p>
      <tr>
+
<p class="text">The expression and the function of CmR was confirmed from (Fig3-2-3-1.) and (Fig. 3-2-3-2), since the Prisoner coli have grown (refer the solid magenta line of (Fig3-2-3-1.) and (Fig. 3-2-3-2)) despite the presence of chloramphenicol in the culture. However, the Prisoner coli have also grown in the culture with chloramphenicol without AHL (dotted magenta line), in other words, the prisoner coli have acquired Cm resistance regardless of the presence of C4HSL. From this fact, leakage in the promoter was suspected (assumed) ((Fig3-2-3-1.) & (Fig. 3-2-3-2)).</p>
      <td width="980px">
+
          <h2 id="32" class="sub5">3.2 Plasmids with an ssrA degradation tag</h2>
      <h4 align="center" class="fig"><strong>Fig.3-7-4-1.</strong></h4>
+
<p class="text">We repeated the experiment (refer to 3.1) using the new plasmid we constructed. From the results of our experiment, we confirmed that the new prisoner coli B (Pcon_rhlR_TT_Plux_CmRssrA) had expressed CmR when induced by C4HSL, as expected (Fig. 3.2.1 and Fig. 3.2.2).</p>
      <td>
+
<p class="text" style="margin-left: 30px;"> Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)</p>
      </tr>
+
<p></p>
      </table><br>
+
<table><tbody><tr><td><img src="https://static.igem.org/mediawiki/2015/d/de/Tokyo_Tech_Growth_las3233.png" width="60%"></td></tr><tr><td><h4 class="fig">Fig. 3-2-3-3. Cooperating Prisoner coli B’s growth with an ssrA tag</h4></td></tr></tbody></table>
          <p class="text2">Device 2: J23106 + I13504(pSB1C3)
+
<p></p>
                <table width="980 px" border="0px">
+
<p class="text" style="margin-left: 30px;"> Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27, 28)</p>
                  <tr>
+
<p></p>
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/3/3b/Tokyo_Tech_Device2.png"/>
+
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-3-4. Defecting Prisoner <i>coli</i> B's growth with an ssrA tag</h4></td></tr></tbody></table>
      </td>
+
<p></p>
      </tr>
+
<p class="text">Protein with an ssrA tag is said to be easy to be dissolved by ClpXP and ClpAP that E.coli originally have. From (Fig.3-2-3-3) and (Fig.3-2-3-4), Prisoner coli with an ssrA tag were not able to grow without C4HSL. Therefore, we can say that CmR produced by the leak of the Plux promoter was dissolved immediately while an ssrA tag was added to CmR. Adding an ssrA tag can be said a sufficient method to reduce the influence of the leak of Plux promoter.</p>
      <tr>
+
<p class="text"> Comparing the growth in the 3CO12HSL lacking culture medium of the initial prisoner coli and the new prisoner coli with the ssrA tag, in other words the magenta dotted line and the green dotted line of each (Fig. 3-2-1) and (Fig. 3-2-2), showed that the leaky CmR was reduced by adding an ssrA tag. </p>
      <td width="980px">
+
<p></p>
      <h4 align="center" class="fig"><strong>Fig.3-7-4-2.</strong></h4>
+
<h2 id="33" class="sub5">3.3 Realizing the payoff matrix</h2>
      <td>
+
<h2 id="331" class="sub6">3.3.1 Seeking the ideal Cm concentration</h2>
      </tr>
+
<p class="text">We ran the experiment with different Chloramphenicol concentration (50, 75, 100 microg/mL).The following three results are the OD of cooperating Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)) and defecting Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +⊿P_lasI (pSB3K3)) grown in the culture medium without C4HSL. The growth inhibition degree of each stand for “high” and “middle” growth inhibition.</p>
      </table><br>
+
<p></p>
          <p class="text2">Device 1: J23117 + I13504(pSB1C3)
+
<table><tbody><tr><td>画像</td></tr><tr><td><h4 class="fig">Fig.3-2-3-5  </h4></td></tr></tbody></table>
                <table width="980 px" border="0px">
+
<p></p>
                  <tr>
+
<p class="text">We tried to make the growth inhibition rate of chloramphenicol larger than the metabolic burden of producing 3OC12HSL. But at the same time, making the difference between “middle” and “high” growth inhibition, in other words, replicating a precise pay off matrix, is also our goal. From the experimental results, 75 microg/mL was determined to be a Cm concentration good enough to realize the precise payoff matrix, while the green lines and the orange lines in (Fig. 3-2-3-5) were able to distinguish.</p>
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/b/be/Tokyo_Tech_Device3.png"/>
+
<p></p>
      </td>
+
<h2 id="332" class="sub6">3.3.2 Payoff matrix with the new Cm Concentration</h2>
      </tr>
+
<p class="text">We ran the “C4HSL-dependent CmR expression assay” with the new Chloramphenicol concentration (75 microg/mL). The results are the following.</p>
      <tr>
+
<p></p>
      <td width="980px">
+
<table><tbody><tr><td>画像</td></tr><tr><td>Fig.3-2-3-6 </td></tr></tbody></table>
      <h4 align="center" class="fig"><strong>Fig.3-7-4-3.</strong></h4>
+
<p></p>
      <td>
+
<p class="text">With the new Chloramphenicol Concentration, the payoff matrix was replicated precisely. The orange line is when you cooperate, and the green is when you defect. The solid line is when your opponent cooperates, and the dotted is when your opponent defects.</p>
      </tr>
+
<p></p>
      </table><br>
+
<h3 id="34" class="sub5">3.4 Decreasing the AHL(C4HSL) Concentration </h3>
          <p class="text2">Positive control: BBa_I20270(pSB1C3)
+
 
                <table width="980 px" border="0px">
+
              <h2 id="4" class="sub4">4. Discussion</h2>
                  <tr>
+
<h2 id="41" class="sub5">4.1 The function of the ssrA tag</h2>
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/0/09/Tokyo_Tech_Interpositive.png"/>
+
<p></p>
      </td>
+
              <h2 class="sub5">4.2  </h2>
      </tr>
+
<p></p>
      <tr>
+
<h2 id="5" class="smalltitle">
      <td width="980px">
+
         
      <h4 align="center" class="fig"><strong>Fig.3-7-4-4.</strong></h4>
+
1. コピペ。<br>
      <td>
+
2. コピペ。<br>
      </tr>
+
3. コピペ。<br>  
      </table><br>
+
4. コピペ。<br>
          <p class="text2">Negative control: BBa_R0040(pSB1C3)
+
5. コピペ。<br>
                <table width="980 px" border="0px">
+
6. コピペ。<br>
                  <tr>
+
7. コピペ。<br>
                  <td width="980px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/1/1b/Tokyo_Tech_Internegative.png"/>
+
8. コピペ。<br>
      </td>
+
9. コピペ。<br>
      </tr>
+
      <tr>
+
      <td width="980px">
+
      <h4 align="center" class="fig"><strong>Fig.3-7-4-5.</strong></h4>
+
      <td>
+
      </tr>
+
      </table><br>
+
              <h3 class="sub5">-Sequence Data</h3>
+
          <p class="text2">Please refer to <a href ="https://2015.igem.org/Team:Tokyo_Tech/Experiment/Interlab/Sequence">Sequence Data</a> page.<br>
+
              <h3 id="ID" class="sub5">4.2.  Instruments and Date</h3>
+
              <h3 id="Inst" class="sub6">4.2.1. Instruments</h3>
+
                <p class="text2"><strong>-Plate reader</strong></p>
+
                  <p class="text3">We used FujiFilm FLA-5100 Fluorescent Image Analyzer from FUJI Film Life Science. The wavelength of light we used to excite the cells was 473 nm. We used BPB1 (530DF20) filter to capture the light emission from the cells. The sampling frequency is only one time.
+
</p>
+
                <p class="text2"><strong>-Flow cytomerer</strong></p>
+
                  <p class="text3">We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company. The wavelength of light we used to excite the cells was 488 nm. We used laser detection channel FL1 to capture the light emission from the cells. Laser detection channel Fl1 was used with sensitivity 680 [v]. The sampling frequency is only one time.</p>
+
              <h3 id="Date" class="sub6">4.2.2. Date</h3>
+
                <p class="text3">Cloning of constructs was confirmed by October 21st 2015. Transformant plates were from 24 October 2015. All the samples were measured on October 27th 2015.</p>
+
              <h3 id="Protocol" class="sub5">4.3. Protocol</h3>
+
              <h3 id="reader" class="sub6">4.3.1. Plate reader</h3>
+
                    <p class="text4">
+
1.  Prepare 3 over night cultures for each sample Device1〜Device3, Positive control and Negative control in 3 mL LB medium containing chloramphenicol (35 microg / mL) at 37 °C for 17h and shake at 180 rpm.<br>
+
2 .Measured the OD590 of each sample and diluted each sample to adjust OD590 within 5% of 0.5.<br>
+
3. Set the plate reader to measure GFP.<br>
+
4. Take 1 mL of the samples, and centrifuge at 9000x g, 1 min, 4°C.<br>
+
5. Remove the supernatants by using P1000 pipette. <br>
+
6. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend.<br>
+
7. Place 200 μL of each sample into the 96-well plate as described in Table. 3-7-4-1.<br>
+
8. Measure the fluorescence intensity with plate reader.<br>  
+
9. Rotate the 96-well plate 180 degrees horizontally and measure the fluorescence intensity again.<br></p>
+
                <table width="940 px" border="0px">
+
                <tr>
+
                <td width="940px"><div align="center"><img src="https://static.igem.org/mediawiki/2015/f/f7/Tokyo_Tech_Interlab_Table.3-7-4-1.png" width="700px"/>
+
                </td>
+
                </tr>
+
                <tr>
+
                <td width="940px">
+
                <h4 align="center" class="fig"><strong>Table. 3-7-4-1.</strong>&nbsp;Position of samples in 96-well plate</h4>
+
                <td>
+
                </tr>
+
      </table><br>
+
              <h3 id="meter" class="sub6">4.3.2. Flow cytometer</h3>
+
                    <p class="text4">
+
1. Prepare 3 over night cultures for each sample Device1〜Device3, Positive control and Negative control in 3m LB medium containing chloramphenicol (35 microg / mL) at 37°C for 17h and shake at 180 rpm.<br>
+
2. Start preparing the flow cytometer 1 h before the end of incubation.<br>
+
3. Measure the OD590 and adjust the volume of each sample to centrifuge so that the amount of pellet will be about the same for every sample.<br>
+
4. Centrifuge the samples at 9000x g, 1min, 4°C.<br>
+
5. Remove the supernatants by using P1000 pipette and suspend the samples with 1mL of filtered PBS (phosphate-buffered saline).<br>
+
6. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
+
7. Measure fluorescence intensity with flow cytometer.<br><br>
+
              <h3 id="How" class="sub5">4.4. How to process the data</h3>
+
              <h3 id="Pr" class="sub6">4.4.1. Plate reader</h3>
+
                    <p class="text4">
+
<strong>-How to draw the calibration curve</strong><br>
+
1. Place 200 μL of various concentrations of sodium fluorescein (500, 375, 250, 125, 50, 25, 10, 5 ng / mL and PBS only) into the 96-well plate in triplicate.<br>
+
2. Measure the fluorescence intensity with the plate reader.<br>
+
3. Rotate the 96-well plate 180 degrees horizontally.<br>
+
4. Measure the fluorescence intensity again.<br>  
+
5. Determine the auto-fluorescence of PBS by calculating the arithmetic mean of fluorescence intensity of PBS added in triplicate and use this value as the background fluorescence. <br>
+
6. Subtract background fluorescence from each fluorescence intensity value of each well containing sodium fluorescein.<br>
+
7. Take the arithmetic mean of the three technical replicates of sodium fluorescein of each concentration.<br>
+
8. Draw the calibration curve.<br> </p><br>
+
 
                     <p class="text4">
 
                     <p class="text4">
<strong>-How to obtain the absolute unit of fluorescence intensity</strong><br>
+
           <h2 id="Reference" class="smalltitle">6.. Reference</h2>
1. Measure the fluorescence intensity with the plate reader.<br>
+
      <p class="text">ここにコピペ。<p><br><br><br>
2. Rotate the 96-well plate 180 degrees horizontally and measure the fluorescence intensity again.<br>
+
3. Calculate the arithmetic mean of these two results.<br>
+
4. Determine the auto-florescence of PBS by calculating the arithmetic mean of fluorescence intensity of PBS added in triplicate and use this value as the background fluorescence.<br>
+
5. Subtract the background fluorescence from each well containing the samples.<br>
+
6. Divide them by the value of OD590 of each sample.<br>
+
7. Calculate the ng / mL fluorescence per OD590 unit by the formula we obtained from drawing the calibration curve.<br>
+
              <h3 id="Flow cytometer" class="sub6">4.4.2. Flow cytometer</h3>
+
                    <p class="text3">Cells were gated according to the side scatter (SSC) and the forward scatter (FCS) to exclude cell debris and impurities.</p><br><br>
+
              <h3 id="Individuals" class="sub5">4.5. Individuals responsible for conducting Interlab study</h3>
+
          <p class="text2">
+
Misa Minegishi : Measured the devices and processed the data.<br>
+
&nbsp;&nbsp;&nbsp;Yuta Yamazaki : Measured the devices and processed the data.<br>
+
&nbsp;&nbsp;&nbsp;Hiraku Tokuma : Created the devices.<br>
+
&nbsp;&nbsp;&nbsp;Riku Shinohara : Created the devices.<br>
+
           <h2 id="Reference" class="smalltitle">5. Reference</h2>
+
      <p class="text"><a href ="https://2014.igem.org/Team:Imperial/InterLab_Study">2014 Imperial Interlab Study</a><br><br><br>
+
 
     </div>
 
     </div>
 
    <div class="textbottom">
 
    <div class="textbottom">

Revision as of 06:30, 16 September 2015

3OC12HSL-dependent growth assay

We have characterized previous parts.

  
  

1. Introduction

      

We designed a signal-dependent growth system by using signaling molecules and antibiotic resistance gene. In our prisoner’s dilemma game, our prisoner coli B needs 3OC12HSL to acquire chloramphenicol resistance (CmR).

For construction of the C4HSL-dependent chloramphenicol resistance gene product (CmR) and 3OC12HSL production module, we constructed an improved parts Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632022). In our story, we confirmed the C4HSL-dependent growth by measuring the optical density.

Fig.3-2-1-1. Payoff matrix of Prisoner coli B

2. Summary of the Experiment

2.1 C4HSL-dependent CmR expression

画像

Fig.3-2-2-1. C4HSL-dependent CmR expression

We confirmed the function of C4HSL-dependent CmR expression by measuring optical density of the cultures containing chloramphenicol (Fig. 3-2-2-1).In this experiment we prepared four plasmids, A, B, C, and D (Fig. 3-2-2-2). Right after the C4HSL induction, we added chloramphenicol into the medium containing Prisoner cell. We measured the optical density for about eight hours to estimate the concentration of the cell.

画像

Fig.3-2-2-2. Plasmids for the experiment of C4HSL-dependent CmR expression

2.3 Adding an ssrA degradation tag

At the first stage of wet experiment, initially designed circuits showed leaky expression of CmR. Although “middle” and “high” growth inhibition is required for implementation of our payoff matrix (Fig. X), cells showed active growth even in the absence of AHL when the cell harboring our initially designed genetic circuit Pcon_rhlR_TT_Plux_CmR in Prisoner coli B (Fig. X). We could not obtain positive results in our modeling by increasing the concentration of Cm, which was one of our solutions. For precise implementation of our payoff matrix, suggestions from modeling allow us successfully improving the former plasmid by adding an ssrA tag right after the CmR gene (Pcon_rhlR_TT_Plux_CmRssrA (BBa_K1632022)) (Fig.3-2-2-3). The ssrA tag helps to degrade the leaked CmR protein. The improved parts were used for construction of BBa_K1632022 circuit for 3OC12HSL inducible expression of CmR. Compared with circuits without ssrA tag BBa_K395160, our improved BBa_K1632022 indeed showed much slower growth which corresponds to “middle” growth inhibition (Fig.3-2-2-1). Furthermore, addition of 3OC12HSL recovers active cell growth which corresponds to “none” growth inhibition (Fig. 2-1). These results show the improved function of AHL-dependent CmR expression by measuring the optical density. (Projectより引用)

画像

Fig.3-2-2-3. The improved plasmid (BBa_K1632022) we constructed

画像

Fig.3-2-2-4. Plasmids for the experiment of C4HSL-dependent CmR expression

2.3 Realizing the payoff matrix

2.3.1 Seeking the ideal Cm Concentration

Using the improved plasmids we constructed, our E.coli version payoff matrix is replicated through wet lab experiments. However, from the results shown in (Fig. X), the difference between “middle” growth inhibition and “high” growth inhibition was hardly observable.

The experiment was conduvted with different Chloramphenicol concentration (50, 75, 100microg/mL). Incubated in a culture medium without AHL, the difference in the growth rate was observed between the one producing AHL and the one not.

2.3.2 Payoff matrix with the new Cm concentraion

We found out that 75microg/mL is a Cm concentration good enough to realize the payoff matrix precisely. Using the new Cm concentration (75microg/mL), the “C12HSL-dependent CmR expression assay” (refer to 5-2-4) was run again to replicate a precise payoff matrix.

2.4 Decreasing the AHL(C4HSL) Concentration

3. Results

3.1 C4HSL-dependent CmT expression

We tested four types of culture condition which contains different Cm concentration (0 and 100 microg/mL) and different AHL concentration (0 and 5 nM). Fig. 3-2-3-1, Fig. 3-2-3-2, Fig. 3-2-3-3, Fig. 3-2-3-4 show the condition in the absence and presence of Cm, respectively. Regardless of the presence of Cm, every cell grew in the culture medium even without C4HSL.

Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)

Fig.3-2-3-1. Cooperating Prisoner coli B’s growth with Cm

Cm (+)…Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27,28)

Fig.3-2-3-2. Defecting Prisoner coli B’s growth with Cm

The expression and the function of CmR was confirmed from (Fig3-2-3-1.) and (Fig. 3-2-3-2), since the Prisoner coli have grown (refer the solid magenta line of (Fig3-2-3-1.) and (Fig. 3-2-3-2)) despite the presence of chloramphenicol in the culture. However, the Prisoner coli have also grown in the culture with chloramphenicol without AHL (dotted magenta line), in other words, the prisoner coli have acquired Cm resistance regardless of the presence of C4HSL. From this fact, leakage in the promoter was suspected (assumed) ((Fig3-2-3-1.) & (Fig. 3-2-3-2)).

3.2 Plasmids with an ssrA degradation tag

We repeated the experiment (refer to 3.1) using the new plasmid we constructed. From the results of our experiment, we confirmed that the new prisoner coli B (Pcon_rhlR_TT_Plux_CmRssrA) had expressed CmR when induced by C4HSL, as expected (Fig. 3.2.1 and Fig. 3.2.2).

Pcon_rhlR_TT_Plux_CmR (6A1) + Plac_lasI (3K3) (8/27, 28)

Fig. 3-2-3-3. Cooperating Prisoner coli B’s growth with an ssrA tag

Pcon_rhlR_TT_Plux_CmR (6A1) + ⊿P_lasI (3K3) (8/27, 28)

画像

Fig.3-2-3-4. Defecting Prisoner coli B's growth with an ssrA tag

Protein with an ssrA tag is said to be easy to be dissolved by ClpXP and ClpAP that E.coli originally have. From (Fig.3-2-3-3) and (Fig.3-2-3-4), Prisoner coli with an ssrA tag were not able to grow without C4HSL. Therefore, we can say that CmR produced by the leak of the Plux promoter was dissolved immediately while an ssrA tag was added to CmR. Adding an ssrA tag can be said a sufficient method to reduce the influence of the leak of Plux promoter.

Comparing the growth in the 3CO12HSL lacking culture medium of the initial prisoner coli and the new prisoner coli with the ssrA tag, in other words the magenta dotted line and the green dotted line of each (Fig. 3-2-1) and (Fig. 3-2-2), showed that the leaky CmR was reduced by adding an ssrA tag.

3.3 Realizing the payoff matrix

3.3.1 Seeking the ideal Cm concentration

We ran the experiment with different Chloramphenicol concentration (50, 75, 100 microg/mL).The following three results are the OD of cooperating Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) + Plac_lasI (pSB3K3)) and defecting Prisoner B (Pcon_rhlR_TT_Plux_CmRssrA (pSB6A1) +⊿P_lasI (pSB3K3)) grown in the culture medium without C4HSL. The growth inhibition degree of each stand for “high” and “middle” growth inhibition.

画像

Fig.3-2-3-5

We tried to make the growth inhibition rate of chloramphenicol larger than the metabolic burden of producing 3OC12HSL. But at the same time, making the difference between “middle” and “high” growth inhibition, in other words, replicating a precise pay off matrix, is also our goal. From the experimental results, 75 microg/mL was determined to be a Cm concentration good enough to realize the precise payoff matrix, while the green lines and the orange lines in (Fig. 3-2-3-5) were able to distinguish.

3.3.2 Payoff matrix with the new Cm Concentration

We ran the “C4HSL-dependent CmR expression assay” with the new Chloramphenicol concentration (75 microg/mL). The results are the following.

画像
Fig.3-2-3-6

With the new Chloramphenicol Concentration, the payoff matrix was replicated precisely. The orange line is when you cooperate, and the green is when you defect. The solid line is when your opponent cooperates, and the dotted is when your opponent defects.

3.4 Decreasing the AHL(C4HSL) Concentration

4. Discussion

4.1 The function of the ssrA tag

4.2

       1. コピペ。
2. コピペ。
3. コピペ。
4. コピペ。
5. コピペ。
6. コピペ。
7. コピペ。
8. コピペ。
9. コピペ。

6.. Reference

      

ここにコピペ。