Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"

Line 31: Line 31:
 
</div>
 
</div>
 
<p> In our system we want to reduce the amount  the amount of<a href= “https://2015.igem.org/Team:ETH_Zurich/Practices/Medicine”> false positives </a>. That’s why cells displaying intermediary characteristics should not be detected by our system. We consider that cells showing increased lactate production rate but do not expose phosphatidylserine, or cells exposing phosphatidylserine but not an increased lactate production rate should not be recognized by our system. We implemented the system to obtain an <b>AND GATE </b>.  The system works as two sequential filtering step. <b> The sequential design </b> was used in order to limit the self-activation of the quorum sensing module .</b> Indeed as we have seen in the <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module">AHL module</a>, the difference between the two modules strongly depends on the amount of LuxR in the <i> E. coli </i>. This design has a disadvantage though, it requires fine-tuning in order to avoid that one signal prevails on the second one.  In the scheme displayed below, we describe in which situation, the <i> E. coli </i> should display fluorescence.  </p>
 
<p> In our system we want to reduce the amount  the amount of<a href= “https://2015.igem.org/Team:ETH_Zurich/Practices/Medicine”> false positives </a>. That’s why cells displaying intermediary characteristics should not be detected by our system. We consider that cells showing increased lactate production rate but do not expose phosphatidylserine, or cells exposing phosphatidylserine but not an increased lactate production rate should not be recognized by our system. We implemented the system to obtain an <b>AND GATE </b>.  The system works as two sequential filtering step. <b> The sequential design </b> was used in order to limit the self-activation of the quorum sensing module .</b> Indeed as we have seen in the <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module">AHL module</a>, the difference between the two modules strongly depends on the amount of LuxR in the <i> E. coli </i>. This design has a disadvantage though, it requires fine-tuning in order to avoid that one signal prevails on the second one.  In the scheme displayed below, we describe in which situation, the <i> E. coli </i> should display fluorescence.  </p>
<p> One particularity of our system is that even healthy cells will produce lactate. That is why we implemented a fold-change sensor. The fold change sensor will produce a pulse of LuxR. We will study here how the pulsed response influence the output of the system. </p>
+
<p> One particularity of our system is that even healthy cells will produce lactate. That is why we implemented a <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/Lactate_Module#Full_module_simplified_model">lactate module</a> that works as a <a href="">fold-change sensor</a>. The fold change sensor will produce a pulse of LuxR. We will study here how the pulsed response influence the output of the system. </p>
 
<div class="imgBox">
 
<div class="imgBox">
 
<!--[if gte IE 9]><!-->
 
<!--[if gte IE 9]><!-->

Revision as of 21:05, 17 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Single-cell Model

Introduction

Logic of an AND-gate

In our system we want to reduce the amount the amount of false positives . That’s why cells displaying intermediary characteristics should not be detected by our system. We consider that cells showing increased lactate production rate but do not expose phosphatidylserine, or cells exposing phosphatidylserine but not an increased lactate production rate should not be recognized by our system. We implemented the system to obtain an AND GATE . The system works as two sequential filtering step. The sequential design was used in order to limit the self-activation of the quorum sensing module . Indeed as we have seen in the AHL module, the difference between the two modules strongly depends on the amount of LuxR in the E. coli . This design has a disadvantage though, it requires fine-tuning in order to avoid that one signal prevails on the second one. In the scheme displayed below, we describe in which situation, the E. coli should display fluorescence.

One particularity of our system is that even healthy cells will produce lactate. That is why we implemented a lactate module that works as a fold-change sensor. The fold change sensor will produce a pulse of LuxR. We will study here how the pulsed response influence the output of the system.

Description of the AND-GATE

Genetic design

In this section, we describe the behaviour of the combined model.

Combined Compartment Model

Overview

In this model we plan to simulate whether our system can work as an AND-GATE. Therefore we simulated the system using compartment to model the density of the E. coli as already explained in the AHL module.

First, we will simulate the model with no amplification of the lactate input to match our experimental results. In a second part, we will simulate the full model. As already done in the AHL module, we will compare three conditions:

  1. No degradation by AiiA, no riboregulator.
  2. Degradation of AHL by AiiA.
  3. Riboregulator controlling LuxI expression.

Results

These equations are the integration of both modules in one compartment model.

Assumptions

Here we will assume that .

Equations

Single cell model

Overview

The single cell model is provided here to simulate the combined model.

Chemical species

Name Description
AHL Signaling protein, Acyl homoserine lactone (30C6-HSL)
LuxR Regulator protein, that can bind to AHL to form a complex
LuxRAHL Complex of LuxR and AHL, activates transcription of LuxI
LuxI Autoinducer synthase
Aiia AHL-lactonase, N-Acyl Homoserine Lactone Lactonase
Lact Lactate
LacI Lac operon repressor, DNA-binding protein, acts as a protein
IPTG Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest
IL Dimer formed between LacI and IPTG

Reactions

\begin{align*} &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LacI},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LuxR}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{R,LacI}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\ \end{align*} \begin{align*} \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}

Equations

Combining all of the equations from the two different modules, it yields the following system:

\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \gamma_2 &= \frac{IPTG_{tot}}{K_{IL}} \end{align*}

We would like to thank our sponsors