Difference between revisions of "Team:Hong Kong-CUHK/Description"
Angellukpy25 (Talk | contribs) |
Angellukpy25 (Talk | contribs) |
||
Line 20: | Line 20: | ||
<p align="right"> Figure 1: Magnetosome </p> | <p align="right"> Figure 1: Magnetosome </p> | ||
</div> | </div> | ||
− | <p style="margin-bottom: 1.5em"> Magnetosome is a kind of rare intracellular membrane-bound structure in a specific type of prokaryotes, of nano-size ranging about 35 - 120 nm. They comprise of a magnetic mineral crystal encapsulated by a lipid bilayer about 3 – 4 nm thick | + | <p style="margin-bottom: 1.5em"> Magnetosome is a kind of rare intracellular membrane-bound structure in a specific type of prokaryotes, of nano-size ranging about 35 - 120 nm. They comprise of a magnetic mineral crystal encapsulated by a lipid bilayer about 3 – 4 nm thick (Figure 1) [1], which might be utilized in various applications involving magnetic field. </p> |
<p style="margin-bottom: 1.5em"> | <p style="margin-bottom: 1.5em"> | ||
The magnetosome membrane is highly significant for its biogenesis as it creates an isolated environment within the cell crucial for mineral crystal nucleation and growth [2]. These inorganic crystals are magnetic in nature (hence its name), which compose of either magnetite (Fe<sub>3</sub>O<sub>4</sub>) or greigite (Fe<sub>3</sub>S<sub>4</sub>). The magnetosomes usually arrange in one or multiple chains along the cell axis. Different varieties of crystal morphologies such as cubo-octahedral, elongated hexagonal prismatic, and bullet-shaped morphologies were discovered in different magnetotactic bacteria [1].</p> | The magnetosome membrane is highly significant for its biogenesis as it creates an isolated environment within the cell crucial for mineral crystal nucleation and growth [2]. These inorganic crystals are magnetic in nature (hence its name), which compose of either magnetite (Fe<sub>3</sub>O<sub>4</sub>) or greigite (Fe<sub>3</sub>S<sub>4</sub>). The magnetosomes usually arrange in one or multiple chains along the cell axis. Different varieties of crystal morphologies such as cubo-octahedral, elongated hexagonal prismatic, and bullet-shaped morphologies were discovered in different magnetotactic bacteria [1].</p> |
Revision as of 22:31, 17 September 2015