Difference between revisions of "Team:ETH Zurich/Modeling/Parameters"

Line 67: Line 67:
 
<table>
 
<table>
 
<tr> <th>Name </th><th>Value</th><th>Description </th><th>References/Estimation </th> </tr>
 
<tr> <th>Name </th><th>Value</th><th>Description </th><th>References/Estimation </th> </tr>
<tr></tr>
+
<tr><td>\(D_{m,AHL}\)</td><td>Diffusion coefficient of AHL through a cell membrane</td><td>ETHZ 2014</td></tr>
 +
<tr><td>\(R_\text{Jurkat}\)</td>Radius of a Jurkat cell<td>5.75 &mu;m</td><td></td></tr>
 +
<tr><td>\(R_\textit{E. coli}\)</td><td>Short-side radius of an <i>E. coli</i> cell</td><td>0.5 &mu;m</td></tr>
 +
<tr><td>\(k_\text{int;Lact\)</td><td>Lactate import rate by LldP</td><td>0.008666/s</td></tr>
 +
<tr><td>\(t_\text{dub}</td><td><i>E. coli</i> doubling time</td><td>30 min</td><td></td></tr>
 
</table>
 
</table>
 
</div>
 
</div>
 
</div>
 
</div>
 
</html>
 
</html>

Revision as of 23:41, 18 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Parameters

AHL module

Single cell model

Name ValueDescription References/Estimation
\(K_{d,\text{LuxRAHL}}\)100 nMDissociation constant between luxR and AHLWeber, 2013
\(\text{LuxR}_\text{tot}\)0.0025 μMTotal concentration of LuxR estimated
\(a_\mathrm{LuxI}\)1 μM.min-1Maximal production rate of LuxIBasu, 2005
\(a_\mathrm{LuxI,ribo}\)0.1 μM.min-1Maximal production rate of LuxIETHZ 2014
\(k_\mathrm{leaky}\)0.0375 μM-1Coefficient for leakiness dependency on LuxR concentration of PLuxR promoter ETHZ 2013
\(K_\mathrm{a,LuxRAHL}\)9.89 nMActivation coefficient of LuxRAHL Estimated from our own data
\(K_\mathrm{LuxRAHL,ribo}\)285 nMActivation coefficient of LuxRAHL in case of a riboregulated LuxR responsive promoter ETHZ 2014
\(L_\mathrm{lux,ribo}\)0.01463 nM.min-1Leakiness after using riboswitch for Plux ETHZ 2014
\(n_\mathrm{lux}\)1.7Hill coefficient for LuxRAHL activation ETHZ 2014
\(d_\mathrm{LuxI}\)0.0167 min-1Degradation rate of LuxI MIT 2010
\(a_\mathrm{AHL}\)0.04 μM.min-1Production rate of AHL Weber, 2013
\(d_\mathrm{AHL}\)0.01 min-1Degradation rate of AHLBasu, 2005
\(v_\mathrm{AiiA}\)\(k_\mathrm{cat} \cdot C_\mathrm{AiiA} \)Maximal conversion rate of AiiA
\(k_\mathrm{cat}\)1.63 103min-1Turnover number of AiiA Wang, 2004
\(C_\mathrm{AiiA}\)variedConcentration of AiiA
\(K_\mathrm{M,AiiA}\)2.95 103 μM Half-maximal rate substrate concentration of AiiA Wang, 2004
\(a_\mathrm{GFP}\)2 μM.min-1Maximal production rate of GFP Basu, 2005
\(d_\mathrm{GFP}\)0.01 min-1Degradation rate of GFP estimated from doubling time of E. coli

Compartment model

Name ValueDescription References/Estimation
\(N_{d}\) 150Number of E. coli in the doughnut Maximal number of E. coli that would fit on the surface
\(N_{b,max}\) 12798Maximum number of E. coli in the bulk Considering the maximal OD is 2
\(V_{cell,d}\) 6 μm3Volume around an E. coli in the doughnut estimated
\(V_{cell,b,worst}\) 78 μm3Volume around an E. coli in the bulkWorst case, estimated from \(N_{b,max}\)
\(V_{cell,b,norm}\) 1000 μm3Volume around an E. coli in the bulkNormal case

Lactate module

Single cell model

Reaction-diffusion model

Radius of a Jurkat cell
Name ValueDescription References/Estimation
\(D_{m,AHL}\)Diffusion coefficient of AHL through a cell membraneETHZ 2014
\(R_\text{Jurkat}\)5.75 μm
\(R_\textit{E. coli}\)Short-side radius of an E. coli cell0.5 μm
\(k_\text{int;Lact\)Lactate import rate by LldP0.008666/s
\(t_\text{dub}E. coli doubling time30 min