Difference between revisions of "Team:HZAU-China/HardWare/Overview"
Line 343: | Line 343: | ||
<h1></br></br>Overview</h1></br> | <h1></br></br>Overview</h1></br> | ||
<p>A genetic oscillator was built in E.coil as the real part while an e-oscillator was simulated in a computer as the virtual part. To realize our idea, two issues should be taken into account, the approach these two parts interacting with each other and the method cells keeping alive for the long and real-time observation. Thus, an interface device is needed in order to settle them. For the first one, light was chose as the medium to combine the virtual part and the real part together. And the other, cells cultivated on a microfluidic chip proved to be helpful.</p> | <p>A genetic oscillator was built in E.coil as the real part while an e-oscillator was simulated in a computer as the virtual part. To realize our idea, two issues should be taken into account, the approach these two parts interacting with each other and the method cells keeping alive for the long and real-time observation. Thus, an interface device is needed in order to settle them. For the first one, light was chose as the medium to combine the virtual part and the real part together. And the other, cells cultivated on a microfluidic chip proved to be helpful.</p> | ||
− | </br><p>In our project, the communication between these two parts is mutual which means that we need a two-way interface device composed of Light Receiving part and Light Controlling part. For the former one, cells were cultivated on a microfluidic chip and observed by fluorescence microscope. And for the last one, light (LED beads) can be | + | </br><p>In our project, the communication between these two parts is mutual which means that we need a two-way interface device composed of Light Receiving part and Light Controlling part. For the former one, cells were cultivated on a microfluidic chip and observed by fluorescence microscope. And for the last one, light (LED beads) can be controlled by the computer through a Single Chip Micyoco. Besides, we have made a different device to achieve the phase 2 collaborated with Model and another to complete the test of light control system with Wet Lab. Most important of all are that these two devices all turned to work successfully. </p> |
</br></br> | </br></br> | ||
</div><!--maincontent结束--> | </div><!--maincontent结束--> |
Revision as of 20:19, 18 September 2015
Mixed-Reality CellBidirectinal coupling between real and virtual bio-oscillators
Overview
A genetic oscillator was built in E.coil as the real part while an e-oscillator was simulated in a computer as the virtual part. To realize our idea, two issues should be taken into account, the approach these two parts interacting with each other and the method cells keeping alive for the long and real-time observation. Thus, an interface device is needed in order to settle them. For the first one, light was chose as the medium to combine the virtual part and the real part together. And the other, cells cultivated on a microfluidic chip proved to be helpful.
In our project, the communication between these two parts is mutual which means that we need a two-way interface device composed of Light Receiving part and Light Controlling part. For the former one, cells were cultivated on a microfluidic chip and observed by fluorescence microscope. And for the last one, light (LED beads) can be controlled by the computer through a Single Chip Micyoco. Besides, we have made a different device to achieve the phase 2 collaborated with Model and another to complete the test of light control system with Wet Lab. Most important of all are that these two devices all turned to work successfully.
© 2015 Huazhong Agricultural University iGEM Team. All rights reserved.
Contacts
- No.1, Shizishan Street, Hongshan District Wuhan, 430070, Hubei Province, P. R. China
- Email:hzauigem@gmail.com
- Twitter : hzau_igem
- Wechat : hzauigem
- QQ Group : 313297095
- YouTube : hzauigem