Difference between revisions of "Team:Bielefeld-CeBiTec/Results/HeavyMetals"

Line 608: Line 608:
  
 
<h2><i>in vitro</i></h2>
 
<h2><i>in vitro</i></h2>
<p>For the characterization of the mercury sensor with CFPS we used parts differing from that we used in vivo characterization. For the in vitro characterization we used a cell extract out of cells which contain the Plasmid (<a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank"> BBa_K1758340</a>). In addition to that we added Plasmid-DNA of the copper specific promoter PmerT with 5’UTR-sfGFP under the control of T7-promoter (<a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K1758344</a>)to the cell extract. The T7-promoter is needed to get a better fluorescence expression. </p>     
+
<p>For the characterization of the mercury sensor with CFPS we used parts differing from that we used in the <i>in vivo</i> characterization. For the <i>in vitro</i> characterization we used a cell extract out of cells, which contained the plasmid (<a href="http://parts.igem.org/Part:BBa_K1758340" target="_blank"> BBa_K1758340</a>)(figure 5). In addition, we added plasmid DNA to the cell extract. This plasmid consisted of the mercury specific promoter <i>pmerT</i> with 5’-UTR-sfGFP. The entire sequence was placed under the control of of T7-promoter (<a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K1758344</a>)(figure 6). The T7-promoter is needed to get a better fluorescence expression.</p>     
  
 
<div class="row">
 
<div class="row">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
   <a href=" https://static.igem.org/mediawiki/2015/3/3c/Bielefeld-CeBiTec_in_vitro_merR-part.jpeg" data-lightbox="heavymetals" data-title=" konst.Prom + MerR used for<i> in vitro</i> characterization. " alt="repressor construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/3/3c/Bielefeld-CeBiTec_in_vitro_merR-part.jpeg" alt="repressor construct used for in vitro characterisation"></a> <figcaption> konst.Prom + MerR <a href="http://parts.igem.org/Part:BBa_K175840" target="_blank">BBa_K175840</a> used for<i>in vitro</i> characterization. </figcaption>
+
   <a href=" https://static.igem.org/mediawiki/2015/3/3c/Bielefeld-CeBiTec_in_vitro_merR-part.jpeg" data-lightbox="heavymetals" data-title=" Figure 5: To produce the cell extract for <i>in vitro</i> characterization a construct (BBa_K1758340 ) with chromium repressor under the control of a constitutive promoter and strong RBS. " alt="repressor construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/3/3c/Bielefeld-CeBiTec_in_vitro_merR-part.jpeg" alt="repressor construct used for in vitro characterisation"></a> <figcaption>Figure 5: To produce the cell extract for <i>in vitro</i> characterization a construct (<a href="http://parts.igem.org/Part:BBa_K175840" target="_blank">BBa_K175840</a>) with chromium repressor under the control of a constitutive promoter and strong RBS (BBa_K608002) is needed. </figcaption>
 
</figure>
 
</figure>
 
     </div>
 
     </div>
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px"> <figure style="width: 400px">
   <a href=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " data-lightbox="heavymetals" data-title="T7-PmerT-UTR-sfGFP used for<i>in vitro</i> characterization." https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " alt="promoter construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg" alt="promoter construct used for in vivo characterisation "></a> <figcaption>T7-PmerT-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K175844</a> used for<i>in vitro</i> characterization.</figcaption>
+
   <a href=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " data-lightbox="heavymetals" data-title="T7-PmerT-UTR-sfGFP used for<i>in vitro</i> characterization." https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg " alt="promoter construct used for in vivo characterization."><img src=" https://static.igem.org/mediawiki/2015/e/e2/Bielefeld-CebiTec_in_vitro_T7-merT-UTR-sfGFP.jpeg" alt="promoter construct used for in vivo characterisation "></a> <figcaption>T7-<i>PmerT</i>-UTR-sfGFP <a href="http://parts.igem.org/Part:BBa_K1758344" target="_blank"> BBa_K175844</a> used for<i>in vitro</i> characterization.</figcaption>
 
</figure>   
 
</figure>   
 
         </div>
 
         </div>
Line 628: Line 628:
 
      
 
      
 
<figure style="width: 600px">
 
<figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/b/b9/Bielefeld-CeBiTec_Influence_of_mercury_on_the_cell_extract.jpeg" data-lightbox="heavymetals" data-title="TEXT Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/b/b9/Bielefeld-CeBiTec_Influence_of_mercury_on_the_cell_extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/b/b9/Bielefeld-CeBiTec_Influence_of_mercury_on_the_cell_extract.jpeg" data-lightbox="heavymetals" data-title="Figure 7: Influence of different mercury concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates. "><img src="https://static.igem.org/mediawiki/2015/b/b9/Bielefeld-CeBiTec_Influence_of_mercury_on_the_cell_extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Influence of different mercury concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates.</figcaption>
+
<figcaption>Figure 7: Influence of different mercury concentrations on our crude cell extract. Error bars represent the standard deviation of three biological replicates.</figcaption>
 
</figure>
 
</figure>
  
Line 643: Line 643:
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px">  
 
     <div class="col-md-6 text-center" style="margin-bottom: 50px">  
 
<figure style="width: 600px">
 
<figure style="width: 600px">
<a href="https://static.igem.org/mediawiki/2015/7/7f/Bielefeld-CeBiTec_induction_mercury_in_merR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="TEXT Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/7/7f/Bielefeld-CeBiTec_induction_mercury_in_merR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
+
<a href="https://static.igem.org/mediawiki/2015/7/7f/Bielefeld-CeBiTec_induction_mercury_in_merR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="Figure 8: Mercury specific cell extract made from E. coli cells, which have already expressed the activator before cell extract production. Induction of mercury inducible promoter without T7 in front of the operator site with different mercury concentrations. Error bars represent the standard deviation of three biological replicates. "><img src="https://static.igem.org/mediawiki/2015/7/7f/Bielefeld-CeBiTec_induction_mercury_in_merR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Mercury specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of mercury inducible promoter without T7 in front of the operator site with different mercury concentrations. Error bars represent the standard deviation of three biological replicates.</figcaption>
+
<figcaption>Figure 8: Mercury specific cell extract made from E. coli cells, which have already expressed the activator before cell extract production. Induction of mercury inducible promoter without T7 in front of the operator site with different mercury concentrations. Error bars represent the standard deviation of three biological replicates. </figcaption>
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 650: Line 650:
 
<figure style="width: 600px">
 
<figure style="width: 600px">
 
<a href="https://static.igem.org/mediawiki/2015/f/f9/Bielefeld-CeBiTec_correction_induction_mercury_in_merR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="TEXT Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/f/f9/Bielefeld-CeBiTec_correction_induction_mercury_in_merR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
 
<a href="https://static.igem.org/mediawiki/2015/f/f9/Bielefeld-CeBiTec_correction_induction_mercury_in_merR_cell-extract.jpeg" data-lightbox="heavymetals" data-title="TEXT Error bars represent the standard deviation of three biological replicates."><img src="https://static.igem.org/mediawiki/2015/f/f9/Bielefeld-CeBiTec_correction_induction_mercury_in_merR_cell-extract.jpeg" alt="Adjusting the detection limit"></a>
<figcaption>Mercury specific cell extract made from <i>E. coli</i> cells which have already expressed the activator before cell extract production. Induction of mercury inducible promoter without T7 in front of the operator site with different mercury concentrations. Error bars represent the standard deviation of three biological replicates.</figcaption>
+
<figcaption>Figure 9: Mercury specific cell extract made from <i>E. coli</i> cells, which have already expressed the activator before cell extract production. Induction of mercury inducible promoter without T7 in front of the operator site with different mercury concentrations. Error bars represent the standard deviation of three biological replicates. </figcaption>
 
</figure>
 
</figure>
 
</div>
 
</div>
 
         </div>
 
         </div>
  
<i>In vitro </i>this sensor showed good results. The results show a high fluorescence level at low concentrations. Additionally it shows that the expression level at 6µg/L (Guideline of WHO for Mercury) is as high as the signal gets. This result shows, the potential for measurement of concentrations under 6µg/L . To confirm this theory it takes more experiments and tests with lower concentrations. Because of the high expression of sfGFP at low concentrations and the same expression level at different concentrations it is not possible to quantify mercury with CFPS analyses, because of the  system utilization which is described in our model.  
+
<p><i>In vitro</i> this sensor showed good results. The fluorescence level was high at low concentrations. Additionally, it showed that the expression level at 6 µg/L (Guideline of WHO for Mercury) reached the maximal signal. This result indicated the potential for measurement of concentrations under 6 µg/L.To confirm this hypothesis, it takes more experiments and tests with lower concentrations. Due to the high expression of sfGFP at low concentrations and the same expression level at different concentrations, it is not possible to quantify mercury with CFPS analyses . , Our model predicted this observation. During the measurement we noticed that the heavy metals have negative influences on the cell extract. Because of this fact, we used a correction factor, which resulted from the heavy metals influence on the CFPS system. This already optimized sensor showed the high potential of optimized sensors in CFPS.</p>
During the measurement and experiments we noticed that the heavy metals have negative influences to the Cell-extract. Because of this fact we used a correction factor which results of the heavy metals influence on the CFPS system.
+
This already optimized sensor shows the high potential of optimized sensors in CFPS.  
+
  
  
Line 663: Line 661:
  
 
<h2>To summarize</h2>
 
<h2>To summarize</h2>
<p>Our mercury sensor works well <i>in vivo</i> as data show. There is a clearly noticeable increase in fluorescence after induction with mercury. Even the WHO guideline is measurable. This well working sensor was tested in <i>in vitro</i>as well. Taken data suggest, that maximal output is reached at concentrations of 6µg/L, which represent the former mentioned WHO guideline. With optimization a detection of even lower concentrations could be possible <i>in vitro</i>.</p>
+
<p>We demonstrated, that our mercury sensor works well <i>in vivo</i> (figure 4). There is a clearly noticeable increase in fluorescence after induction with mercury. Even the threshold concentration, which is given in the WHO guideline, can be measured. This well working sensor was tested in <i>in vitro</i> as well. The presented data suggested, that maximal output is reached at concentrations of 6 µg/ L,which represent the value of the former mentioned WHO guideline. Further optimization could lead to a decreasing <i>in vitro</i> detection threshold.</p>
 
</div>
 
</div>
  

Revision as of 02:27, 19 September 2015

iGEM Bielefeld 2015


Heavy Metals

Results

Adjusting the detection limit
Influence of heavy metals on the growth of E.coli KRX. The tested concentrations were 20 µg/L lead, 60 µg/L mercury, 60 µg/L chromium, 80 µg/L nickel, 40 mg/L copper, which represent ten times the WHO guideline. The influence of arsenic was not tested as E. coli is known to be resistant to arsenic.

We tested our heavy metal biosensors in Escherichia coli as well as in our cell-free protein synthesis.

Prior to the in vivo characterization, we tested whether the heavy metals have a negative effect on the growth of E. coli.

As can be seen from the figure, we observed no significant difference between the growth in the presence of heavy metals and the controls. This first experiment showed us that in vivo characterization of these sensors is possible. Most cultivations for in vivo characterization were performed in the BioLector. Due to the accuracy of this device, we could measure our samples in duplicates. Subsequently, all functional biosensors were tested in vitro.

Click on the test strip for the results of our biosensor tests in E. coli and in our CFPS:

teststrip

To summarize all

We have characterized heavy metal sensors for arsenic, chromium, copper, lead, mercury and nickel. The results for our nickel characterization indicated that the constructed nickel sensor is not suitable for our test strip. The sensors for lead and chromium showed great potential, as they showed responses to chromium or lead, but require further optimization. Copper, our new heavy metal sensor, worked as expected and was able to detect different copper concentrations. The already well-characterized sensors for arsenic and mercury were tested as well. While the arsenic sensor worked well in vivo, it requires some omptimization for the use in vitro. Mercury showed that a fully optimized sensor works very well in our in vitro system and has the potential to detect even lower concentrations than in vivo.