Difference between revisions of "Team:China Tongji/Team"

Line 1: Line 1:
{{China_Tongji}}
+
{{China_Tongji_Head}}
 +
{{China_Tongji_Content}}
  
 
<html>
 
<html>
 +
<head>
  
<head></head>
+
<script type="text/javascript">
  
<body>
+
jQuery(document).ready(function($){
 +
$('#listMembers').click(function(){$('html,body').animate({scrollTop: $('#Members').offset().top-78}, 800);});
 +
$('#listAttributions').click(function(){$('html,body').animate({scrollTop: $('#Attributions').offset().top-78}, 800);});
 +
$('#listAdvisor').click(function(){$('html,body').animate({scrollTop: $('#Advisor').offset().top-78}, 800);});
 +
$('#listSponsor').click(function(){$('html,body').animate({scrollTop: $('#Sponsor').offset().top-78}, 800);});
 +
$('#listContact').click(function(){$('html,body').animate({scrollTop: $('#Contact').offset().top-78}, 800);});
 +
});
  
 +
window.onscroll = function(){
 +
    var t = document.documentElement.scrollTop || document.body.scrollTop;
 +
    var contentList = document.getElementById( "contentList" );
 +
    if( t >= 200 ) {
 +
        contentList.style.position = "fixed";
 +
contentList.style.top = "78px";
 +
    } else {
 +
        contentList.style.position = "static";
 +
    }
  
<table width="90%" align="center"> <br><br>
+
var AttributionsST = document.getElementById("Attributions").offsetTop;
 +
var AdvisorST = document.getElementById("Advisor").offsetTop;
 +
var SponsorST = document.getElementById("Sponsor").offsetTop;
 +
var ContactST = document.getElementById("Contact").offsetTop;
  
<tr><td>
+
    <h3 align="center" style="font-size:42px; color:teal"><b> Members</b></h3><br>
+
if( t<AttributionsST-78 ){
</td></tr>
+
document.getElementById("listMembers").style.color = "#F0F";
 +
}else{
 +
document.getElementById("listMembers").style.color = "#000";
 +
}
 +
 +
if( (t>=AttributionsST-78) ){
 +
document.getElementById("listAttributions").style.color = "#F0F";
 +
if(t>=AdvisorST-78){
 +
document.getElementById("listAttributions").style.color = "#000";
 +
}}else{
 +
document.getElementById("listAttributions").style.color = "#000";
 +
}
 +
 +
if( (t>=AdvisorST-78) ){
 +
document.getElementById("listAdvisor").style.color = "#F0F";
 +
if(t>=SponsorST-78){
 +
document.getElementById("listAdvisor").style.color = "#000";
 +
}}else{
 +
document.getElementById("listAdvisor").style.color = "#000";
 +
}
 +
 +
if( (t>=SponsorST-78) ){
 +
document.getElementById("listSponsor").style.color = "#F0F";
 +
if(t>=ContactST-78){
 +
document.getElementById("listSponsor").style.color = "#000";
 +
}}else{
 +
document.getElementById("listSponsor").style.color = "#000";
 +
}
 +
 +
if( t>=ContactST-78 ){
 +
document.getElementById("listContact").style.color = "#F0F";
 +
}else{
 +
document.getElementById("listContact").style.color = "#000";
 +
}
 +
}
 +
</script>
  
<tr><td>
+
</head>
  
<br> <p>In this page you can introduce your team members, instructors, and advisors. </p>
+
<body>
  
<h4>Inspiration</h4>
+
<!--head start-->
<p>You can look at what other teams did to get some inspiration! <br />
+
<div class="head">
Here are a few examples:</p>
+
<div id="navLogoLeft">
<ul>
+
        <a href="https://igem.org/Team.cgi?year=2015&amp;team_name=China_Tongji">
<li><a href="https://2014.igem.org/Team:METU_Turkey_team">METU Turkey </a></li>
+
        <img id="teamLogo" src="https://static.igem.org/mediawiki/2015/5/57/China_Tongji_team-logo-300px.png"/>
<li><a href="https://2014.igem.org/Team:Colombia/Members">Colombia</a></li>
+
        </a>
<li><a href="https://2014.igem.org/Team:Stony_Brook/Team">Stony Brook</a></li>
+
    </div>
<li><a href="https://2014.igem.org/Team:OUC-China/Team">OUC-China</a></li>
+
    <div id="navLogoRight">
</ul>
+
        <a href="https://2015.igem.org/Main_Page">
 +
            <img id="igemLogo"  src="https://static.igem.org/mediawiki/2015/2/20/China_Tongji_iGEM_logo.png" alt="China_Tongji"/>
 +
        </a>
 +
    </div>
 +
    <div class="nav">
 +
        <div class="navOne" id="divHome"><a class="navOneA" id="Home" href="https://2015.igem.org/Team:China_Tongji">Home</a></div>
 +
        <div class="navOne" id="divProject"><a class="navOneA" id="Project" href="https://2015.igem.org/Team:China_Tongji/Project">Project <img src="https://static.igem.org/mediawiki/2015/0/07/China_Tongji_2015_dropdown_arrow.png"></a>
 +
            <div class="navDrop">
 +
                    <li class="navTwo" id="navOverview"><a href="https://2015.igem.org/Team:China_Tongji/Project">Overview</a></li>
 +
                    <li class="navTwo" id="navBackground"><a href="https://2015.igem.org/Team:China_Tongji/Project">Background</a></li>
 +
                    <li class="navTwo" id="navDesign"><a href="https://2015.igem.org/Team:China_Tongji/Project">Design</a></li>
 +
                    <li class="navTwo" id="navProtocol"><a href="https://2015.igem.org/Team:China_Tongji/Project">Protocol</a></li>
 +
                    <li class="navTwo" id="navSummaryResult"><a href="https://2015.igem.org/Team:China_Tongji/Project">Summary and Result</a></li>
 +
            </div>
 +
        </div>
 +
        <div class="navOne" id="divNotebook"><a class="navOneA" id="Notebook" href="https://2015.igem.org/Team:China_Tongji/Notebook">Notebook <img src="https://static.igem.org/mediawiki/2015/0/07/China_Tongji_2015_dropdown_arrow.png"></a>
 +
            <div class="navDrop">
 +
                <li class="navTwo" id="navRecord"><a href="https://2015.igem.org/Team:China_Tongji/Notebook">Record</a></li>
 +
                <li class="navTwo" id="navTimeline"><a href="https://2015.igem.org/Team:China_Tongji/Notebook">Timeline</a></li>
 +
            </div>
 +
        </div>
 +
        <div class="navOne" id="divAchivement"><a class="navOneA" id="Achivement" href="https://2015.igem.org/Team:China_Tongji/Achivement">Achivement <img src="https://static.igem.org/mediawiki/2015/0/07/China_Tongji_2015_dropdown_arrow.png"></a>
 +
            <div class="navDrop">
 +
                    <li class="navTwo" id="navParts"><a href="https://2015.igem.org/Team:China_Tongji/Achivement">Parts</a></li>
 +
                    <li class="navTwo" id="navEquipment"><a href="https://2015.igem.org/Team:China_Tongji/Achivement">Equipment</a></li>
 +
                    <li class="navTwo" id="navModeling"><a href="https://2015.igem.org/Team:China_Tongji/Achivement">Modeling</a></li>
 +
                    <li class="navTwo" id="navJudgingForm"><a href="https://2015.igem.org/Team:China_Tongji/Achivement">Judging Form</a></li>
 +
            </div>
 +
        </div>
 +
        <div class="navOne" id="divTeam"><a class="navOneA" id="Team" href="https://2015.igem.org/Team:China_Tongji/Team">Team <img src="https://static.igem.org/mediawiki/2015/0/07/China_Tongji_2015_dropdown_arrow.png"></a>
 +
            <div class="navDrop">
 +
                <li class="navTwo" id="navMembers"><a>Members</a></li>
 +
                <li class="navTwo" id="navAttributions"><a>Attributions</a></li>
 +
                <li class="navTwo" id="navAdvisor"><a>Advisor</a></li>
 +
                <li class="navTwo" id="navSponsor"><a>Sponsor</a></li>
 +
                <li class="navTwo" id="navContact"><a>Contact</a></li>
 +
            </div>
 +
        </div>
 +
        <div class="navOne" id="divOutreach"><a class="navOneA" id="Outreach" href="https://2015.igem.org/Team:China_Tongji/Outreach">Outreach <img src="https://static.igem.org/mediawiki/2015/0/07/China_Tongji_2015_dropdown_arrow.png"></a>
 +
            <div class="navDrop">
 +
                <li class="navTwo" id="navHumanPractice"><a href="https://2015.igem.org/Team:China_Tongji/Outreach">Human Practice</a></li>
 +
                <li class="navTwo" id="navCollaboration"><a href="https://2015.igem.org/Team:China_Tongji/Outreach">Collaboration</a></li>
 +
            </div>
 +
        </div>
 +
        <div class="navOne" id="divSafety"><a class="navOneA" id="Safety" href="https://2015.igem.org/Team:China_Tongji/Safety">Safety</a></div>
 +
    </div>   
 +
</div>
  
<h5>What should this page contain?</h5>
+
<!--content start-->
<ul>
+
<div class="bigName">
<li> Include pictures of your teammates, don’t forget instructors and advisors! </li>
+
<p align="left">Team</p>
<li>You can add a small biography or a few words from each team member, to tell us what you like, and what motivated you to participate in iGEM.</li>
+
</div>
<li>Take team pictures! Show us your school, your lab and little bit of your city.</li>
+
<li>Remember that image galleries can help you showcase many pictures while saving space.</li>
+
</ul>
+
  
</div> <br>
+
<div class="myContent">
 +
<div id="contentList">
 +
        <li class="listOne"><p id="listMembers">Members</p></li>
 +
        <li class="listOne"><p id="listAttributions">Attributions</p></li>
 +
        <li class="listOne"><p id="listAdvisor">Advisor</p></li>
 +
        <li class="listOne"><p id="listSponsor">Sponsor</p></li>
 +
        <li class="listOne"><p id="listContact">Contact</p></li>
 +
    </div>
 +
    <div id=mainContent>
 +
    <!-- maincontent start here -->
 +
        <p class="titleOne" id="Members">1. Members</p> 
 +
        <p class="contentP">
 +
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
        <center><img class="contentImg" src="https://static.igem.org/mediawiki/2015/5/57/China_Tongji_team-logo-300px.png" ></center>
 +
        <p class="imgName" align="center">Figure 1. Schematic demonstration of HIV</p>
 +
        <p class="contentP">
 +
        We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to <span style="font-weight:bold;">adapt</span> to environmental change. The basic idea is to rewire the connections between parts and devices to <span style="font-weight:bold;">implement multiple functions</span> with the help of the site-specific recombination systems.</p>
 +
        <p class="contentP">
 +
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 +
        <p></p><div class="divider"></div>
  
</tr></td>
+
<p class="titleOne" id="Attributions">2. Attributions</p>             
 +
        <p class="contentP">Since its inception more than a decade ago, synthetic biology has undergone considerable development and has attained significant achievements with the help of the engineering slant. However, there are still obstacles to build a cell. Engineers try to abstract the DNA sequences into some standard functional parts and assemble them using some principles in electrical engineering. So far, the limited understanding of biological system prevents us to combine parts and modules to create larger scale systems. The complexity of synthetic systems didn’t increase rapidly as the Moore’s law (Purnick and Weiss, 2009). </p>
 +
        <p class="contentP">We designed a time-sharing system that can process information according to the input signal. Cells rewire its synthetic circuit to <span style="font-weight:bold;">alter the topological structure of regulatory pathway</span> when they receive the corresponding stimuli. In this way, we <span style="font-weight:bold;">reuse the existing synthetic module</span> rather than add a new one to implement another function, which reduces the resource cost in running unnecessary function and prevents the interplay between parallel modules. After overcoming these two big problems, our engineered cells are more <span style="font-weight:bold;">versatile</span> and <span style="font-weight:bold;">flexible</span> in information processing. </p>
 +
        <p></p><div class="divider"></div>
 +
       
 +
<p class="titleOne" id="Advisor">3. Advisor</p> 
 +
        <p class="contentP">
 +
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
        <center><img class="contentImg" src="https://static.igem.org/mediawiki/2015/5/57/China_Tongji_team-logo-300px.png" ></center>
 +
        <p class="imgName" align="center">Figure 2. China Tongji logo</p>
 +
        <p class="contentP">
 +
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 +
        <p></p><div class="divider"></div>
 +
       
 +
<p class="titleOne" id="Sponsor">4. Sponsor</p> 
 +
        <p class="contentP">
 +
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
        <p class="contentP">
 +
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 +
        <p></p><div class="divider"></div>
 +
       
 +
        <p class="titleOne" id="Contact">5. Contact</p> 
 +
        <p class="contentP">
 +
        Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
        <center><img class="contentImg" src="https://static.igem.org/mediawiki/2015/2/20/China_Tongji_iGEM_logo.png" ></center>
 +
        <p class="imgName" align="center">Figure 2. China_Tongji_iGEM_logo</p>
 +
        <p class="contentP">
 +
        Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 +
 
 +
</div>
 +
</div>
  
</table> </body> </html>
+
</body>
 +
</html>
  
 
{{China_Tongji_Foot}}
 
{{China_Tongji_Foot}}

Revision as of 19:37, 28 July 2015

close label

Team

  • Members

  • Attributions

  • Advisor

  • Sponsor

  • Contact

  • 1. Members

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Figure 1. Schematic demonstration of HIV

    We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to adapt to environmental change. The basic idea is to rewire the connections between parts and devices to implement multiple functions with the help of the site-specific recombination systems.

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

    2. Attributions

    Since its inception more than a decade ago, synthetic biology has undergone considerable development and has attained significant achievements with the help of the engineering slant. However, there are still obstacles to build a cell. Engineers try to abstract the DNA sequences into some standard functional parts and assemble them using some principles in electrical engineering. So far, the limited understanding of biological system prevents us to combine parts and modules to create larger scale systems. The complexity of synthetic systems didn’t increase rapidly as the Moore’s law (Purnick and Weiss, 2009).

    We designed a time-sharing system that can process information according to the input signal. Cells rewire its synthetic circuit to alter the topological structure of regulatory pathway when they receive the corresponding stimuli. In this way, we reuse the existing synthetic module rather than add a new one to implement another function, which reduces the resource cost in running unnecessary function and prevents the interplay between parallel modules. After overcoming these two big problems, our engineered cells are more versatile and flexible in information processing.

    3. Advisor

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Figure 2. China Tongji logo

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

    5. Contact

    Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

    Figure 2. China_Tongji_iGEM_logo

    Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.