Difference between revisions of "Team:Sherbrooke/Experiments"

m
Line 2: Line 2:
 
<html>
 
<html>
  
<h2>Experiments &amp; Protocols</h2>
+
<h1>Experiments &amp; Protocols</h1>
  
<p>Describe the experiments, research and protocols you used in your iGEM project.</p>
+
<h2>Projects modules</h2>
 +
<ul>
 +
<li><a href="#MC96">MC96</a></li>
 +
<li><a href="#MC1.5">MC1.5</a></li>
 +
<li><a href="#TAC">TAC</a></li>
 +
</ul>
 +
 
 +
<span id="#MC96"> &nbsp; </span>
 +
<h2>MC96</h2>
 +
<h3>Thermal experimentation</h3>
 +
<p>
 +
The only experimentations done are simulations because no prototype has been built yet.
 +
</p>
 +
</br>
 +
<h4>Simulation</h4>
 +
<p>
 +
Thermal simulations have been done on the software COMSOL. These simulations have been used
 +
to verify the heat transfer of the aluminium mold of the modules, thus helping us improve their
 +
design. For the <i>MC96</i>, some simulation has been done on early design, but none on the final design,
 +
due to the impossibility to simulate heat pipes.
 +
</p>
 +
 
 +
<h5>Simulation parameters</h5>
 +
<table>
 +
<tr>
 +
<th>Parameters</th>
 +
<th>Values</th>
 +
</tr>
 +
<tr>
 +
<td>Peltier element cooling power</td>
 +
<td>120W</td>
 +
</tr>
 +
<tr>
 +
<td>Peltier element heating power</td>
 +
<td>500W</td>
 +
</tr>
 +
<tr>
 +
<td>Air convective heat transfer coefficient</td>
 +
<td>50W/(m<sup>2</sup> &#8451;)</td>
 +
</tr>
 +
<tr>
 +
<td>Isolation conductive heat transfer coefficient</td>
 +
<td>5W/(m &#8451;)</td>
 +
</tr>
 +
<tr>
 +
<td>Aluminium type</td>
 +
<td>6061-t6</td>
 +
</tr>
 +
<tr>
 +
<td>Aluminium conductive heat transfer coefficient</td>
 +
<td>167W/(m &#8451;)</td>
 +
</tr>
 +
<tr>
 +
<td>Aluminium specific heat capacity</td>
 +
<td>0.896J/(g &#8451;)</td>
 +
</tr>
 +
</table>
 +
 +
<span id="#MC1.5"> &nbsp; </span>
 +
<h2>MC1.5</h2>
 +
<h3>Thermal experimentation</h3>
 +
 
 +
<h4>Simulation</h4>
 +
 
 +
<h5>Simulation parameters</h5>
 +
<table>
 +
<tr>
 +
<th>Parameters</th>
 +
<th>Values</th>
 +
</tr>
 +
<tr>
 +
<td>Peltier element cooling power</td>
 +
<td>60W</td>
 +
</tr>
 +
<tr>
 +
<td>Peltier element heating power</td>
 +
<td>250W</td>
 +
</tr>
 +
<tr>
 +
<td>Air convective heat transfer coefficient</td>
 +
<td>50W/(m<sup>2</sup> &#8451;)</td>
 +
</tr>
 +
<tr>
 +
<td>Isolation conductive heat transfer coefficient</td>
 +
<td>5W/(m &#8451;)</td>
 +
</tr>
 +
<tr>
 +
<td>Aluminium type</td>
 +
<td>6061-t6</td>
 +
</tr>
 +
<tr>
 +
<td>Aluminium conductive heat transfer coefficient</td>
 +
<td>167W/(m &#8451;)</td>
 +
</tr>
 +
<tr>
 +
<td>Aluminium specific heat capacity</td>
 +
<td>0.896J/(g &#8451;)</td>
 +
</tr>
 +
</table>
 +
 
 +
<h4>Trials protocols</h4>
 +
<p>
 +
These are the protocol used to test the thermal characteristic of the <i>MC1.5</i>  prototype.
 +
These protocols have been tested on a single sub-module of a <i>MC1.5</i> .
 +
</p>
  
<h5>What should this page contain?</h5>
+
<h5>Maintaining a temperature below room temperature test</h5>
 +
<h6>Purpose</h6>
 +
<p>
 +
Determine if the module temperature stability fits the specified of &#177;1.5&#8451;, when the
 +
set temperature is below room temperature. Also, this test determines the voltage versus
 +
the set temperature relation.
 +
</p>
 +
<h6>Material</h6>
 
<ul>
 
<ul>
<li> Protocols </li>
+
<li><i>MC1.5</i> sub-module</li>
<li> Experiments </li>
+
<li>High current power supply (<a href="http://www.bkprecision.com/products/power-supplies/1694-1-30v-30a-switching-dc-power-supply-with-remote-sense.html">bk precision 1694 power supply</a>) </li>
<li>Documentation of the development of your project </li>
+
<li>Power supply (<a href="http://www.testequity.com/products/1864/">Topward 6303D</a>) </li>
 +
<li>Electronic thermometer (<a href="http://assets.fluke.com/manuals/51______omeng0500.pdf">Fluke 51K/J thermometer</a>) </li>
 
</ul>
 
</ul>
  
 +
<h6>Setup</h6>
 +
<ol>
 +
<li>Connect the power supply (Topward 6303D) to the fan</li>
 +
<li>Power up the power supply and adjust the voltage to 12V</li>
 +
<li>Connect the high current power supply (bk precision 1694 power supply)
 +
to the Peltier element (PS vcc to Peltier gnd and PS gnd to Peltier vcc)</li>
 +
<li>Set the thermocouple probe at the bottom of  the middle hole of the aluminium mold</li>
 +
<li>Wait for the thermometer measure to stabilize for 20 second</li>
 +
</ol>
  
 +
<h6>Measurement</h6>
 +
<ol>
 +
<li>Set the voltage of the high current power supply to 1V</li>
 +
<li>Wait for thermometer measure to stabilize for at least 20 second</li>
 +
<li>Note the thermometer measure and the voltage associated with it</li>
 +
<li>Repeats set 1, 2 and 3  and increased the voltage by 1V each time until the thermometer measure is below the specified lower limit (0&#8451;)</li>
 +
<li>Stop the high current power supply</li>
 +
<li>Stop the fan power supply</li>
 +
</ol>
  
<h4>Inspiration</h4>
+
<h5>Maintaining a temperature over room temperature test</h5>
 +
<h6>Purpose</h6>
 +
<p>
 +
Determine if the module temperature stability fits the specification of &#177;1.5&#8451;, when the
 +
    set temperature is over room temperature. Also, this test determines the voltage versus
 +
the set temperature relation.
 +
</p>
 +
<h6>Material</h6>
 
<ul>
 
<ul>
<li><a href="https://2014.igem.org/Team:Colombia/Protocols">2014 Colombia </a></li>
+
<li><i>MC1.5</i> sub-module</li>
<li><a href="https://2014.igem.org/Team:Imperial/Protocols">2014 Imperial </a></li>
+
<li>High current power supply (<a href="http://www.bkprecision.com/products/power-supplies/1694-1-30v-30a-switching-dc-power-supply-with-remote-sense.html">bk precision 1694 power supply</a>) </li>
<li><a href="https://2014.igem.org/Team:Caltech/Project/Experiments">2014 Caltech </a></li>
+
<li>Power supply (<a href="http://www.testequity.com/products/1864/">Topward 6303D</a>) </li>
 +
<li>Electronic thermometer (<a href="http://assets.fluke.com/manuals/51______omeng0500.pdf">Fluke 51K/J thermometer</a>) </li>
 
</ul>
 
</ul>
  
<h2>Also in "Project"</h2>
+
<h6>Setup</h6>
 +
<ol>
 +
<li>Connect the power supply (Topward 6303D) to the fan</li>
 +
<li>Power up the power supply and adjust the voltage to 12V</li>
 +
<li>Connect the high current power supply (bk precision 1694 power supply)
 +
to the Peltier element (PS vcc to Peltier vcc and PS gnd to Peltier gnd)</li>
 +
<li>Set the thermocouple probe at the bottom of  the middle hole of the aluminium mold</li>
 +
<li>Wait for the thermometer measure to stabilize for 20 second</li>
 +
</ol>
 +
 
 +
<h6>Measurement</h6>
 +
<ol>
 +
<li>Set the voltage of the high current power supply to 1V</li>
 +
<li>Wait for thermometer measure to stabilize for at least 20 second</li>
 +
<li>Note the thermometer measure and the voltage associated with it</li>
 +
<li>Repeats set 1, 2 and 3  and increased the voltage by 1V each time until the thermometer measure is over the specified upper limit (80&#8451;)</li>
 +
<li>Stop the high current power supply</li>
 +
<li>Stop the fan power supply</li>
 +
</ol>
 +
 
 +
<h5>Cooling speed test</h5>
 +
<h6>Purpose</h6>
 +
<p>
 +
Determine if the module cooling speed fits the specification of 0.5 to 1&#8451;/s.
 +
Also, this test determines the optimal voltage to apply to cool the aluminium mold.
 +
</p>
 +
<h6>Material</h6>
 
<ul>
 
<ul>
<a href="https://2015.igem.org/Team:Sherbrooke/Description"><li>Project Description</li></a>
+
<li><i>MC1.5</i> sub-module</li>
<a href="https://2015.igem.org/Team:Sherbrooke/Results"><li>Results</li></a>
+
<li>High current power supply (<a href="http://www.bkprecision.com/products/power-supplies/1694-1-30v-30a-switching-dc-power-supply-with-remote-sense.html">bk precision 1694 power supply</a>) </li>
<a href="https://2015.igem.org/Team:Sherbrooke/Design"><li>Design</li></a>
+
<li>Power supply (<a href="http://www.testequity.com/products/1864/">Topward 6303D</a>) </li>
 +
<li>Electronic thermometer (<a href="http://assets.fluke.com/manuals/51______omeng0500.pdf">Fluke 51K/J thermometer</a>) </li>
 +
<li>Chronometer</li>
 
</ul>
 
</ul>
 +
 +
<h6>Setup</h6>
 +
<ol>
 +
<li>Connect the power supply (Topward 6303D) to the fan</li>
 +
<li>Power up the power supply and adjust the voltage to 12V</li>
 +
<li>Connect the high current power supply (bk precision 1694 power supply)
 +
to the Peltier element (PS vcc to Peltier vcc and PS gnd to Peltier gnd)</li>
 +
<li>Set the thermocouple probe at the bottom of  the middle hole of the aluminium mold</li>
 +
</ol>
 +
 +
<h6>Measurement</h6>
 +
<ol>
 +
<li>Set the voltage of the high current power supply to reach 85&#8451;</li>
 +
<li>Wait for thermometer measure to stabilize for at least 20 second</li>
 +
<li>Stop the high current power supply </li>
 +
<li>Invert connection between the Peltier element and the high current power supply</li>
 +
<li>Set the high current power supply to 15.5V (calculated by this <a href="#MethodCoolingVoltage">method</a>)</li>
 +
<li>Start the chronometer when the thermometer measure reach 80&#8451;</li>
 +
<li>For each 10&#8451; temperature drop, note the timestamp until 0&#8451; is reached</li>
 +
<li>Stop the high current power supply </li>
 +
<li>Invert connection between the Peltier element and the high current power supply</li>
 +
<li>Repeats step 1 to 9 for cooling voltage of 15V and 16V </li>
 +
</ol>
 +
 +
<span id="#MethodCoolingVoltage"> &nbsp; </span>
 +
<h6> <font color="red">Theoretical method to determine the optimised cooling voltage </font></h6>
 +
 +
<h5>Heating speed test</h5>
 +
<h6>Purpose</h6>
 +
<p>
 +
Determine if the module heating speed fits the specified 0.5 to 1&#8451;/s. 
 +
</p>
 +
<h6>Material</h6>
 +
<ul>
 +
<li><i>MC1.5</i> sub-module</li>
 +
<li>High current power supply (<a href="http://www.bkprecision.com/products/power-supplies/1694-1-30v-30a-switching-dc-power-supply-with-remote-sense.html">bk precision 1694 power supply</a>) </li>
 +
<li>Power supply (<a href="http://www.testequity.com/products/1864/">Topward 6303D</a>) </li>
 +
<li>Electronic thermometer (<a href="http://assets.fluke.com/manuals/51______omeng0500.pdf">Fluke 51K/J thermometer</a>) </li>
 +
<li>Chronometer</li>
 +
</ul>
 +
 +
<h6>Setup</h6>
 +
<ol>
 +
<li>Connect the power supply (Topward 6303D) to the fan</li>
 +
<li>Power up the power supply and adjust the voltage to 12V</li>
 +
<li>Connect the high current power supply (bk precision 1694 power supply)
 +
to the Peltier element (PS vcc to Peltier gnd and PS gnd to Peltier vcc)</li>
 +
<li>Set the thermocouple probe at the bottom of  the middle hole of the aluminium mold</li>
 +
</ol>
 +
 +
<h6>Measurement</h6>
 +
<ol>
 +
<li>Set the voltage of the high current power supply to reach -5&#8451;</li>
 +
<li>Wait for thermometer measure to stabilize for at least 20 second</li>
 +
<li>Stop the high current power supply </li>
 +
<li>Invert connection between the Peltier element and the high current power supply</li>
 +
<li>Set the high current power supply to 24V (Maximal voltage available for the Peltier element)</li>
 +
<li>Start the chronometer when the thermometer measure reach 0&#8451;</li>
 +
<li>For each 10&#8451; temperature rise, note the timestamp until 80&#8451; is reached</li>
 +
<li>Stop the high current power supply </li>
 +
</ol>
 +
 +
 +
<span id="#TAC"> &nbsp; </span>
 +
<h2>TAC</h2>
 +
 +
 
         </div></div> <!--Closing tag for div id="mainContainer" and div id="contentContainer". Opening tag are in the template-->
 
         </div></div> <!--Closing tag for div id="mainContainer" and div id="contentContainer". Opening tag are in the template-->
 
</html>
 
</html>

Revision as of 00:20, 11 September 2015

Experiments & Protocols

Projects modules

 

MC96

Thermal experimentation

The only experimentations done are simulations because no prototype has been built yet.


Simulation

Thermal simulations have been done on the software COMSOL. These simulations have been used to verify the heat transfer of the aluminium mold of the modules, thus helping us improve their design. For the MC96, some simulation has been done on early design, but none on the final design, due to the impossibility to simulate heat pipes.

Simulation parameters
Parameters Values
Peltier element cooling power 120W
Peltier element heating power 500W
Air convective heat transfer coefficient 50W/(m2 ℃)
Isolation conductive heat transfer coefficient 5W/(m ℃)
Aluminium type 6061-t6
Aluminium conductive heat transfer coefficient 167W/(m ℃)
Aluminium specific heat capacity 0.896J/(g ℃)
 

MC1.5

Thermal experimentation

Simulation

Simulation parameters
Parameters Values
Peltier element cooling power 60W
Peltier element heating power 250W
Air convective heat transfer coefficient 50W/(m2 ℃)
Isolation conductive heat transfer coefficient 5W/(m ℃)
Aluminium type 6061-t6
Aluminium conductive heat transfer coefficient 167W/(m ℃)
Aluminium specific heat capacity 0.896J/(g ℃)

Trials protocols

These are the protocol used to test the thermal characteristic of the MC1.5 prototype. These protocols have been tested on a single sub-module of a MC1.5 .

Maintaining a temperature below room temperature test
Purpose

Determine if the module temperature stability fits the specified of ±1.5℃, when the set temperature is below room temperature. Also, this test determines the voltage versus the set temperature relation.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier gnd and PS gnd to Peltier vcc)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
  5. Wait for the thermometer measure to stabilize for 20 second
Measurement
  1. Set the voltage of the high current power supply to 1V
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Note the thermometer measure and the voltage associated with it
  4. Repeats set 1, 2 and 3 and increased the voltage by 1V each time until the thermometer measure is below the specified lower limit (0℃)
  5. Stop the high current power supply
  6. Stop the fan power supply
Maintaining a temperature over room temperature test
Purpose

Determine if the module temperature stability fits the specification of ±1.5℃, when the set temperature is over room temperature. Also, this test determines the voltage versus the set temperature relation.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier vcc and PS gnd to Peltier gnd)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
  5. Wait for the thermometer measure to stabilize for 20 second
Measurement
  1. Set the voltage of the high current power supply to 1V
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Note the thermometer measure and the voltage associated with it
  4. Repeats set 1, 2 and 3 and increased the voltage by 1V each time until the thermometer measure is over the specified upper limit (80℃)
  5. Stop the high current power supply
  6. Stop the fan power supply
Cooling speed test
Purpose

Determine if the module cooling speed fits the specification of 0.5 to 1℃/s. Also, this test determines the optimal voltage to apply to cool the aluminium mold.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier vcc and PS gnd to Peltier gnd)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
Measurement
  1. Set the voltage of the high current power supply to reach 85℃
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Stop the high current power supply
  4. Invert connection between the Peltier element and the high current power supply
  5. Set the high current power supply to 15.5V (calculated by this method)
  6. Start the chronometer when the thermometer measure reach 80℃
  7. For each 10℃ temperature drop, note the timestamp until 0℃ is reached
  8. Stop the high current power supply
  9. Invert connection between the Peltier element and the high current power supply
  10. Repeats step 1 to 9 for cooling voltage of 15V and 16V
 
Theoretical method to determine the optimised cooling voltage
Heating speed test
Purpose

Determine if the module heating speed fits the specified 0.5 to 1℃/s.

Material
Setup
  1. Connect the power supply (Topward 6303D) to the fan
  2. Power up the power supply and adjust the voltage to 12V
  3. Connect the high current power supply (bk precision 1694 power supply) to the Peltier element (PS vcc to Peltier gnd and PS gnd to Peltier vcc)
  4. Set the thermocouple probe at the bottom of the middle hole of the aluminium mold
Measurement
  1. Set the voltage of the high current power supply to reach -5℃
  2. Wait for thermometer measure to stabilize for at least 20 second
  3. Stop the high current power supply
  4. Invert connection between the Peltier element and the high current power supply
  5. Set the high current power supply to 24V (Maximal voltage available for the Peltier element)
  6. Start the chronometer when the thermometer measure reach 0℃
  7. For each 10℃ temperature rise, note the timestamp until 80℃ is reached
  8. Stop the high current power supply
 

TAC