Difference between revisions of "Team:ETH Zurich/Modeling/Lactate Module"

Line 61: Line 61:
 
\end{align*}
 
\end{align*}
 
<h3>Characteristics of the model</h3>
 
<h3>Characteristics of the model</h3>
<h4>Reasonable parameter ranges </h4>
+
<h4>Fold change behaviour </h4>
 
</div>
 
</div>
 
</div>
 
</div>
 
</html>
 
</html>

Revision as of 14:09, 20 August 2015

"What I cannot create I do not understand."
- Richard Feynmann

Lactate Module

Introduction

The initial idea was to implement a fold change sensor in order to measure the lactate production rate. We assumed that on our timeframe, the lactate production might not reach steady state. That is why our sensor has the topology of a fold change sensor. However due to the topology of the natural detection system in E coli. Our system does not behave as a fold change sensor but rather amplifies the difference between the production of cancer and normal cells.

Chemical species

Name Description
Lacout Lactate produced by mammalian cells
Lacin Lactate inside E. coli cells
L2 Lldr, regulatory protein of lld operon, acts as a repressor
DLL Dimer formed between Lactate and LLdr dimer
LacI Lac repressor, DNA-binding protein, acts as a protein
IPTG Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest
IL Dimer formed between LacI and IPTG
LldP Lactate permease, active transporter

Reactions

\begin{align*} \text{Lac}_{\text{out}}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{m,p}},v_\mathrm{max,p}} \text{Lac}_{\text{in}}\\ 2 \cdot \text{Lac}_{\text{in}} + \text{L}_{2} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{DLL}}}^{k_{\mathrm{-DLL}}} \text{DLL}\\ &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\bot}^{\text{L}_2}} \text{LacI}\\ &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\bot}^{\text{L}_2}} \text{GFP}\\ &\mathop{\xrightarrow{\hspace{4em}}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{GFP}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ \end{align*}

Initial model and predictive modeling

Equations

Assumptions

  1. We used the quasi steady state approximation to model the fast dimerization of Lactate to L2 and of IPTG to LacI.
  2. We assumed that the Hill coefficient for Lldr was equal to two, since two Lactate molecules bind to one dimer of Lldr. The Hill coefficient for LacI was also set to two.

Equations

\begin{align*} [L_2] &=\frac{L_\mathrm{2tot}}{\frac{[Lac_\mathrm{in}]^2}{K_\mathrm{DLL}}+1}\\ \frac{d[LacI]}{dt}&=\frac{a_{\mathrm{LacI}}}{1+(\frac{[L_2]}{K_{\mathrm{RL}}})^2}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[GFP]}{dt}&=\frac{a_\mathrm{GFP}}{1+(\frac{[L_2]}{K_{\mathrm{RL}}})^2}*\frac{1}{1+(\frac{[LacI]}{K_{\mathrm{RLacI}}})^2}-d_{\mathrm{GFP}}[GFP]\\ \end{align*}

Non dimensionalized equations

For the initial model, we chose to model the input of lactate as a step input. We non-dimensionalized the system in order to simplify the system

\begin{align*} l_0&= [ \tilde{L_2}]=\frac{[L_2]}{K_{\mathrm{RL}}}\\ l_1&=[\tilde{LacI}]=\frac{[LacI]}{K_{\mathrm{RLacI}}}\\ l_2&=[GFP]\\ \tau &=d_{\mathrm{LacI}}*t\\ B&=\frac{Lac_\mathrm{ini}^2}{K_\mathrm{DLL}}\\ l_0 &=\frac{\gamma_1}{F_c^2 \cdot \alpha^2 \cdot B+1}\\ \frac{dl_1}{d\tau}&=\frac{a_1}{1+l_0^2}-l_1\\ \frac{dl_2}{d\tau}&=\frac{b_1}{1+l_0^2}*\frac{1}{1+l_1^2}-b_2l_2\\ a_1&=\frac{a_{Laci}}{d_{Laci}*K_{RLacI}}\\ b_1 &= \frac{a_{gfp}}{d_{Laci}}\\ b_2&= \frac{d_{gfp}}{d_{Laci}}\\ K_\mathrm{DLL} &= \frac{k_\mathrm{-DLL}}{k_\mathrm{DLL}}\\ \gamma_1 &= \frac{L_\mathrm{2tot}}{K_\mathrm{RL}} \end{align*}

Characteristics of the model

Fold change behaviour