|
|
Line 6: |
Line 6: |
| <h1>Combined Model</h1> | | <h1>Combined Model</h1> |
| <h2> Introduction </h2> | | <h2> Introduction </h2> |
| + | <div class="imgBox" style="float:right;width:60%;margin: 20px 0px 20px 20px !important;"> |
| + | <!--[if gte IE 9]><!--> |
| + | <a href="https://static.igem.org/mediawiki/2015/c/c5/Boxgeneticdesign2308.svg"> |
| + | <object class="svg" id="Boxgeneticdesign" data="https://static.igem.org/mediawiki/2015/c/c5/Boxgeneticdesign2308.svg" type="image/svg+xml" style="overflow:hidden"> |
| + | <img src="IMG FALLBACK URL" /> |
| + | </object> |
| + | </a> |
| + | <script type="text/javascript"> |
| + | /* Used to resize the SVG */ |
| + | $(window).load(function() { |
| + | var boxen = $($('#mainContainer #Boxgeneticdesign')[0].contentDocument.getElementsByTagName('svg')[0]).find('g#g4399,g#g4403'); |
| + | boxen.css({'cursor':'pointer','cursor':'hand'}); |
| + | boxen.mouseenter(function(){$(this).find('rect')[0].style.opacity="0"}).mouseleave(function(){$(this).find('rect')[0].style.opacity="0.2"}); |
| + | $(boxen[0]).click(function(){window.location.href="https://2015.igem.org/Team:ETH_Zurich/Modeling/Lactate_Module";}); |
| + | $(boxen[1]).click(function(){window.location.href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module";}); |
| + | }); |
| + | </script> |
| + | <!--<![endif]--> |
| + | <!--[if lte IE 8]> |
| + | <img src="IMG FALLBACK URL" /> |
| + | <![endif]--> |
| + | <p><b> Genetic design</b></p> |
| + | </div> |
| + | <p>In this section, we describe the behaviour of the combined model. </p> |
| <h2> Single cell model </h2> | | <h2> Single cell model </h2> |
| + | <h3> Overview</h3> |
| + | The single cell model is provided here to simulate the combined model. |
| <h3> Reactions</h3> | | <h3> Reactions</h3> |
| \begin{align*} | | \begin{align*} |
Combined Model
Introduction
Genetic design
In this section, we describe the behaviour of the combined model.
Single cell model
Overview
The single cell model is provided here to simulate the combined model.
Reactions
\begin{align*}
&\mathop{\xrightarrow{\hspace{4em}}}_{a_{LacI},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\
&\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LuxR}\\
&\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{R,LacI}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{LuxR}\\
\text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\
\varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\
\text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\
&\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\
&\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\
\text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\
\text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\
\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\
\text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\
\text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\
\text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\
\end{align*}
Equations
\begin{align*}
\frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\
\frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\
[LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\
\frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\
\frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\
\frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\
K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\
\gamma_2 &= \frac{IPTG_{tot}}{K_{IL}}
\end{align*}
Simulation