Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"
Line 36: | Line 36: | ||
<p>The single cell model is provided here to simulate the combined model. </p> | <p>The single cell model is provided here to simulate the combined model. </p> | ||
<h3> Chemical species</h3> | <h3> Chemical species</h3> | ||
− | + | <table> | |
+ | <tr> <th>Name </th> <th>Description </th> </tr> | ||
+ | <tr> <td>AHL</td> <td> Signaling protein, Acyl homoserine lactone (30C6-HSL) </td> </tr> | ||
+ | <tr> <td>LuxR </td> <td>Regulator protein, that can bind to AHL to form a complex </td> </tr> | ||
+ | <tr> <td>LuxRAHL </td> <td>Complex of LuxR and AHL, activates transcription of LuxI </td> </tr> | ||
+ | <tr> <td>LuxI </td> <td>Autoinducer synthase </td> </tr> | ||
+ | <tr> <td>Aiia </td> <td>AHL-lactonase, N-Acyl Homoserine Lactone Lactonase </td> </tr> | ||
+ | <tr> <td>Lact</td> <td> Lactate </td> </tr> | ||
+ | <tr> <td>LacI</td> <td>Lac operon repressor, DNA-binding protein, acts as a protein</td> </tr> | ||
+ | <tr> <td>IPTG </td> <td>Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest </td> </tr> | ||
+ | <tr> <td>IL </td> <td>Dimer formed between LacI and IPTG </td> </tr> | ||
+ | </table> | ||
<h3> Reactions</h3> | <h3> Reactions</h3> | ||
\begin{align*} | \begin{align*} |
Revision as of 13:17, 5 September 2015
- Project
- Modeling
- Lab
- Human
Practices - Parts
- About Us
Combined Model
Introduction
In this section, we describe the behaviour of the combined model.
Single cell model
Overview
The single cell model is provided here to simulate the combined model.
Chemical species
Name | Description |
---|---|
AHL | Signaling protein, Acyl homoserine lactone (30C6-HSL) |
LuxR | Regulator protein, that can bind to AHL to form a complex |
LuxRAHL | Complex of LuxR and AHL, activates transcription of LuxI |
LuxI | Autoinducer synthase |
Aiia | AHL-lactonase, N-Acyl Homoserine Lactone Lactonase |
Lact | Lactate |
LacI | Lac operon repressor, DNA-binding protein, acts as a protein |
IPTG | Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest |
IL | Dimer formed between LacI and IPTG |
Reactions
\begin{align*} &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LacI},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LuxR}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{R,LacI}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{LuxR}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ \varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}Equations
Combining all of the equations from the two different modules, it yields the following system:
\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \gamma_2 &= \frac{IPTG_{tot}}{K_{IL}} \end{align*}Simulation
Here, we expect to find the features from the two models: