Difference between revisions of "Team:ETH Zurich/Modeling/Single-cell Model"

Line 3: Line 3:
 
<script type="text/javascript" src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 
<script type="text/javascript" src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
  
<div class="expContainer">
+
<div class="expContainer" style=position:relative>
 
<h1>Combined Model</h1>
 
<h1>Combined Model</h1>
 +
 +
<!--[if gte IE 9]><!-->
 +
<!--<div class="imgBox">-->
 +
<a href="https://static.igem.org/mediawiki/2015/8/81/Combined_model.svg">
 +
<object class="svg" data="https://static.igem.org/mediawiki/2015/8/81/Combined_model.svg" type="image/svg+xml" width="12%" style="position:absolute;top:100px;right:44%">
 +
</object></a>
 +
<!--</div>-->
 +
<!--<![endif]-->
 +
<!--[if lte IE 8]>
 +
<![endif]-->
 +
<p></p>
 +
<p></p>
 +
<p></p>
 +
 
<h2> Introduction </h2>  
 
<h2> Introduction </h2>  
 
<div class="imgBox" style="float:right;width:60%;margin: 20px 0px 20px 20px !important;">
 
<div class="imgBox" style="float:right;width:60%;margin: 20px 0px 20px 20px !important;">

Revision as of 13:50, 13 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Combined Model

Introduction

Genetic design

In this section, we describe the behaviour of the combined model.

Single cell model

Overview

The single cell model is provided here to simulate the combined model.

Chemical species

Name Description
AHL Signaling protein, Acyl homoserine lactone (30C6-HSL)
LuxR Regulator protein, that can bind to AHL to form a complex
LuxRAHL Complex of LuxR and AHL, activates transcription of LuxI
LuxI Autoinducer synthase
Aiia AHL-lactonase, N-Acyl Homoserine Lactone Lactonase
Lact Lactate
LacI Lac operon repressor, DNA-binding protein, acts as a protein
IPTG Isopropyl β-D-1-thiogalactopyranoside, prevents LacI from repressing the gene of interest
IL Dimer formed between LacI and IPTG

Reactions

\begin{align*} &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LacI},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LacI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{A,appLact}}^{\displaystyle\mathop{\downarrow}^{\text{Lact}}} \text{LuxR}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_{LuxR},K_{R,LacI}}^{\displaystyle\mathop{\bot}^{\text{LacI}}} \text{LuxR}\\ \text{IPTG} + \text{LacI} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{IL}}}^{k_{\mathrm{-IL}}} \text{IL}\\ \varnothing&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{LuxR}}} \text{LuxR}\\ \text{AHL} + \text{LuxR} &\mathop{\mathop{\xrightarrow{\hspace{4em}}}^{\xleftarrow{\hspace{4em}}}}_{k_{\mathrm{LuxRAHL}}}^{k_{\mathrm{-LuxRAHL}}} \text{LuxRAHL}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{LuxI},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{LuxI}\\ &\mathop{\xrightarrow{\hspace{4em}}}_{a_\mathrm{GFP},K_{\mathrm{a,LuxRAHL}}}^{\displaystyle\mathop{\downarrow}^{\text{LuxRAHL}}} \text{GFP}\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{a_{\mathrm{AHL}}}\text{AHL}+\text{LuxI}\\ \text{LuxR}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxR}}}\varnothing\\ \text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{AHL}}}\varnothing\\ \text{LuxRAHL}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxRAHL}}}\varnothing\\ \text{LuxI}&\mathop{\xrightarrow{\hspace{4em}}}^{d_{\mathrm{LuxI}}}\varnothing\\ \text{Aiia}+\text{AHL}&\mathop{\xrightarrow{\hspace{4em}}}^{K_{\mathrm{M}},v_{\mathrm{Aiia}}}\text{Aiia}\\ \end{align*}

Equations

Combining all of the equations from the two different modules, it yields the following system:

\begin{align*} \frac{d[LacI]}{dt}&=\frac{a_\mathrm{LacI} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}-d_{\mathrm{LacI}}[LacI]\\ \frac{d[LuxR]}{dt}&=\frac{a_\mathrm{LuxR} \cdot (\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}}{1+(\frac{[Lact]}{K_\mathrm{A,appLact}})^{n_1}} \cdot \frac{1}{1+(\frac{[LacI]}{K_{\mathrm{R,LacI}}\cdot (\gamma_2+1)})^{n_\mathrm{2}}}-d_{\mathrm{LuxR}}[LuxR]\\ [LuxRAHL]&= \frac{[AHL]\cdot [LuxR]}{K_{\mathrm{d,LuxRAHL}}+[AHL]}\\ \frac{d[LuxI]}{dt}&=a_{\mathrm{LuxI}}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_{\mathrm{LuxI}}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{LuxI}}[LuxI]\\ \frac{d[AHL]}{dt}&=a_{\mathrm{AHL}}[LuxI]-d_{\mathrm{AHL}}[AHL]-\frac{v_\mathrm{Aiia}\cdot [AHL]}{K_{\mathrm{M,AiiA}}+[AHL]}\\ \frac{d[GFP]}{dt}&=a_\mathrm{GFP}k_{\mathrm{leaky}}([LuxR]-[LuxRAHL])+\frac{a_\mathrm{GFP}(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}{1+(\frac{[LuxRAHL]}{K_{\mathrm{A,LuxRAHL}}})^2}-d_{\mathrm{GFP}}[GFP]\\ K_\mathrm{d,LuxRAHL} &= \frac{k_\mathrm{-LuxRAHL}}{k_\mathrm{LuxRAHL}}\\ \gamma_2 &= \frac{IPTG_{tot}}{K_{IL}} \end{align*}

Simulation

Here, we expect to find the features from the two models:

We would like to thank our sponsors