Difference between revisions of "Team:Waterloo"

m (Changing to transparent logo)
(Structure changes to header)
Line 3: Line 3:
 
<div class="jumbotron">
 
<div class="jumbotron">
 
     <div class="container">
 
     <div class="container">
    <div class="row vertical-align">
+
        <div class="row vertical-align">
        <div class="col-sm-6 text-center">
+
            <div class="col-sm-5">
             <h2>
+
                <img src="/wiki/images/5/5e/Waterloo_crispier_logo_transparent.png" alt="Waterloo iGEM CRISPieR Logo" class="img-responsive"/>
<font color="#fbb67a">Swappable sgRNA Targets</font> | <font color="#79bcc7">Engineered PAM Flexibility</font> | <font color="#92cc78">Antiviral Protection for Plants</font></h2>
+
             </div>
 +
            <div class="col-sm-2 text-center">
 +
                <h2 class="orangetext no-border">Swappable sgRNA Targets</h2>
 +
            </div>
 +
            <div class="col-sm-3 text-center">
 +
                <h2 class="bluetext no-border">Engineered PAM Flexibility</h2>
 +
            </div>
 +
            <div class="col-sm-2 text-center">
 +
                <h2 class="greentext no-border">Antiviral Protection for Plants</h2>
 +
            </div>
 
         </div>
 
         </div>
        <div class="col-sm-6">
 
            <img src="/wiki/images/5/5e/Waterloo_crispier_logo_transparent.png" alt="Waterloo iGEM CRISPieR Logo" class="img-responsive"/>
 
        </div>
 
    </div>
 
 
     </div>
 
     </div>
 
</div>
 
</div>
 
<div id ="mainContainer">
 
<div id ="mainContainer">
 
<div id ="contentContainer">
 
<div id ="contentContainer">
     <h2>Re-engineering CRISPR-Cas9 with functional applications in eukaryotic systems</h2>
+
     <h2 style="text-align:center;" class="no-border">Re-engineering CRISPR-Cas9 with functional applications in eukaryotic systems</h2>
 
     <p>
 
     <p>
 
         CRISPR-Cas9 is an exciting tool for synthetic biologists because it can target and edit genomes with unprecedented specificity. Our team is attempting to re-engineer CRISPR to make it more flexible and easier to use.
 
         CRISPR-Cas9 is an exciting tool for synthetic biologists because it can target and edit genomes with unprecedented specificity. Our team is attempting to re-engineer CRISPR to make it more flexible and easier to use.
Line 28: Line 33:
 
     <p>
 
     <p>
 
         The application we chose to explore is a proof-of-concept antiviral system defending the model plant <i>Arabidopsis thaliana</i> against Cauliflower Mosaic Virus, which would benefit from testing a large number of possible sgRNAs in the viral genome.
 
         The application we chose to explore is a proof-of-concept antiviral system defending the model plant <i>Arabidopsis thaliana</i> against Cauliflower Mosaic Virus, which would benefit from testing a large number of possible sgRNAs in the viral genome.
    </p>
 
 
 
    <p class="desc-links" style="text-align:center;margin-bottom:85px;">
 
        <a href="/Team:Waterloo/Sitemap">Sitemap</a>
 
 
     </p>
 
     </p>
  

Revision as of 04:31, 15 September 2015

Waterloo iGEM CRISPieR Logo

Swappable sgRNA Targets

Engineered PAM Flexibility

Antiviral Protection for Plants

Re-engineering CRISPR-Cas9 with functional applications in eukaryotic systems

CRISPR-Cas9 is an exciting tool for synthetic biologists because it can target and edit genomes with unprecedented specificity. Our team is attempting to re-engineer CRISPR to make it more flexible and easier to use.

We’re making it easy to test different sgRNA designs: restriction sites added to the sgRNA backbone allow 20 nucleotide target sequences to be swapped without excessive cloning.

Additionally, we’re applying recent research on viable mutations within Cas9’s PAM-interacting domain to design (d)Cas9 variants that bind to novel PAM sites, moving towards the goal of a suite of variants that can bind any desired sequence. We believe our re-engineered CRISPR-Cas9 will give biologists increased ability to optimize targeting in many applications.

The application we chose to explore is a proof-of-concept antiviral system defending the model plant Arabidopsis thaliana against Cauliflower Mosaic Virus, which would benefit from testing a large number of possible sgRNAs in the viral genome.

Top