Difference between revisions of "Team:UFSCar-Brasil/modelling.html"

Line 44: Line 44:
 
         <div class="row">
 
         <div class="row">
 
           <h3 class="ui header" id="result">Part II</h3>
 
           <h3 class="ui header" id="result">Part II</h3>
<h4 class="ui header">Plasmolysis</h4>
+
          <p>Desenvolvemos uma abordagem estatística para o estudo da eficiência das chaperonas no enovelamento da limoneno sintase. Com o intuito de criar uma método que melhor descreva a combinação de chaperonas com base nos dados de rendimento, criamos um dendograma que ilustra o agrupamento delas com base na distancia estatística dos seus rendimentos. Depois foi resolvido um sistema linear com todas as relações e encontrou-se constantes estatísticas de cada componente.</p>
(1) $$ z = z_0 + ax + by + cx^2 + dy^2 + fxy $$
+
(2) $$ H[z(x,y)] = \begin{bmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial z,\partial y} \\ \frac{\partial^2 z}{\partial z,\partial y} & \frac{\partial^2 z}{\partial y^2} \end{bmatrix} $$
+
(3) $$ \frac{\partial^2 z}{\partial x^2} = 2c = - 0,08774 $$
+
(4) $$ \frac{\partial^2 z}{\partial y^2} = 2d = - 0,00178 $$
+
(5) $$ \frac{\partial^2 z}{\partial x,\partial y} = \frac{\partial^2 z}{\partial y,\partial x} = f = 0,00319 $$
+
(6) $$ H[z(x,y)]=(-0,08774)(0,00178)-(0,00319)^2=-0,0001663533 $$
+
(7) $$ \frac{dz}{dx}=a+2cx+fy=0 $$
+
(8) $$ \frac{dz}{dy}=b+2dy+fx=0 $$
+
(9) $$ -\frac{a+2cx}{f}=y=\frac{-b+fx}{2d} $$
+
<h4 class="ui header"> Kill switch </h4>
+
Kill Switch
+
 
+
(1) $$ F_{luo}=a[GFP]+b $$
+
(2) $$ F_{luo}=113[GFP]+94 $$
+
(3) $$ F_{luo}=1.85 \times 10^{-13}  GFP+117 $$
+
(4) $$ GFP_{/h}=(1.51 \times 10^{16} ) e^{-0,106 [PEG]} $$
+
(5) $$ GFP_{/h}=(5.4 \times 10^{15} ) e^{-0,082 [PEG]} $$
+
(6) $$ ψ_{osm}=-(1.18 \times 10^{-2} )C-(1.18 \times 10^{-4} )C^2+(2.67 \times 10^{-4} )CT+(8.39 \times 10^{-7}) C^2 T $$
+
(7) $$ GFP_{/h}=2.3 \times 10^{15}+ (1.2 \times 10^{16} ) e^{1.5  ψ_{osm}} $$
+
(8) $$ GFP_{/h}=9.6 \times 10^{14}+ (4.1 \times 10^{15} ) e^{0.1  ψ_{osm}} $$
+
(9) $$ f(x)=\frac{L}{(1+e^{-k(x-x_0 )})} $$
+
(10) $$ f(t)=6-\frac{zur_0}{zur(t)} $$
+
(11) $$ [Zn]_{total}=[Zn]_0-4(smtA(t)-K_{smtA}smtA(t))-f(t)(zur_0+zur_p (t)-K_{zur} (zur_0+zur_p (t))) $$
+
(12) $$ lim_{t \to \infty}[Zn]_{total} (t)=0 \to Zn_0=0.94[4 L_{smt}+(6-\frac{L_{zur}}{zur_0})(zur_0+L_{zur})] $$
+
  
 
         </div>
 
         </div>

Revision as of 02:44, 16 September 2015

Modelling

What we do

Overview

Overview

Part I

The purpose of this part of the modeling was to determine what would be the optimum absorbance and with it we would have funded the point relative to the longest time and the lowest percentage of PEG possible. For that were done some weeks of the experiment in the micro-biology laboratory. Then the data were processed and analyzed in order to find which one or ones would be that points. The analysis consisted initially in a model for which the system is most suited. After that, were found specific values which we analyze the simulated surface. Finally, we find the lines that tangents the surface where the point could be found. This study was of great significance when we realize that our project aims to find in stores and with this analysis is made possible to predict the validity of the product.

Part II

Desenvolvemos uma abordagem estatística para o estudo da eficiência das chaperonas no enovelamento da limoneno sintase. Com o intuito de criar uma método que melhor descreva a combinação de chaperonas com base nos dados de rendimento, criamos um dendograma que ilustra o agrupamento delas com base na distancia estatística dos seus rendimentos. Depois foi resolvido um sistema linear com todas as relações e encontrou-se constantes estatísticas de cada componente.

Part III

One of our prime objective is to describe the activity of uspA promoter ( Universal Stress Protein A promoter) when exposed to osmotic chock compared with J23101 promoter. To quantify more precisely this behavior we adjust experimental points with general exponential functions and also related PEG concentration’s date with osmotic pressure. With the proper fitted curves, we modeled the concentration’s fall of Zn 2+ from external environment by import the metal to intracellular environment and gradually build up the smtA protein aiming estimate the approximate time for begin the death cell process, that initiate with the release of our killswitch’s promoter region due to the absence of Zn in cellular environmental to maintain the zur factor repressing ufscarA promoter. With the unblocked promoter, the transcription of death genes starts, metabolism and cell integrity is compromised leading to cell death.

Our amazing sponsors!

Our amazing sponsors!