Difference between revisions of "Team:Yale/notebook"

Line 147: Line 147:
 
     <div id="week5" data-reveal="" aria-labelledby="iGEM Modal" aria-hidden="true" role="dialog" class="reveal-modal grayModal">
 
     <div id="week5" data-reveal="" aria-labelledby="iGEM Modal" aria-hidden="true" role="dialog" class="reveal-modal grayModal">
 
       <h2 class="modal__title">Lessons from Week 4</h2>
 
       <h2 class="modal__title">Lessons from Week 4</h2>
       <p>Today, we're visiting a museum.</p>
+
       <p>This week, we made progress in amplifying cyanobacteria and rhizobium promoters. We performed multiple antibiotic resistance assays and transformation experiments in both types of bacteria as part of our attempt to create a framework for propagating and selecting nonmodel organisms. </p>
 +
      <p>All of the primers for our cyanobacteria promoters have arrived. Dan worked on amplifying them so that they can be assembled with citrine into one of the vectors we have and tested for strength. Unfortunately, due to a power outage that halted the PCR run, no amplifications were successful.</p>
 +
      <p>One of the bigger issues we handled this week was the cyanobacteria growth media. We ordered freshwater BG-11 from Sigma-Aldrich, but we needed marine BG-11 to grow PCC 7002. We researched and found the reagents necessary to prepare MN marine medium from a seawater base in our lab.</p>
 +
      <p>Our rhizobium transformation experiments gave us mixed results. Using electroporation, R. tropici was able to take up the KT230 plasmid, but S. meliloti 356, 370, and 371 demonstrated kan and spec resistance and we were not able to determine whether the transformation was successful for those strains. We also experimented with conjugation as an alternative transformation method. We found a protocol for conjugating E. coli to UTEX 2973 and began to incubate E. coli containing pKT230.2 When UTEX 2973 reaches OD750 0.5, we will proceed with conjugation.</p>
 +
      <p>We performed several rhizobium antibiotic resistance assays to determine whether our strains of rhizobium have natural resistance to certain antibiotics. The results suggested that none of our strains have kanamycin resistance, but R. tropici and S. meliloti 371 have spectinomycin resistance. We also performed a rifampicin assay to determine whether we could eventually use MAGE to induce resistance to rifampicin in rhizobium. The assay worked with 2x1010 cells, but even 20 uL/mL rifampicin was below the limit of detection (see Fig. 1). Our goal moving forward is to redo this assay at lower concentrations.</p>
 
       <p class="text-center"><img src="http://client.cameronyick.us/igem/assets/img/journal/pigeon.jpg"></p>
 
       <p class="text-center"><img src="http://client.cameronyick.us/igem/assets/img/journal/pigeon.jpg"></p>
      <p>Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels.</p>
 
      <p>Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels.</p>
 
 
       <p class="text-center"><a href="dropbox.com/#week5" class="file__link">Go to the Lab Notebook</a></p>
 
       <p class="text-center"><a href="dropbox.com/#week5" class="file__link">Go to the Lab Notebook</a></p>
 
       <h4 class="week_log">Entry for week<a href="#" data-reveal-id="week1">-1</a><a href="#" data-reveal-id="week2">1</a><a href="#" data-reveal-id="week3">2</a><a href="#" data-reveal-id="week4">3</a><a href="#" data-reveal-id="week5">4</a><a href="#" data-reveal-id="week6">5</a><a href="#" data-reveal-id="week7">6</a><a href="#" data-reveal-id="week8">7</a><a href="#" data-reveal-id="week9">8</a><a href="#" data-reveal-id="week10">9</a><a href="#" data-reveal-id="week11">10</a><a href="#" data-reveal-id="week12">10+</a>
 
       <h4 class="week_log">Entry for week<a href="#" data-reveal-id="week1">-1</a><a href="#" data-reveal-id="week2">1</a><a href="#" data-reveal-id="week3">2</a><a href="#" data-reveal-id="week4">3</a><a href="#" data-reveal-id="week5">4</a><a href="#" data-reveal-id="week6">5</a><a href="#" data-reveal-id="week7">6</a><a href="#" data-reveal-id="week8">7</a><a href="#" data-reveal-id="week9">8</a><a href="#" data-reveal-id="week10">9</a><a href="#" data-reveal-id="week11">10</a><a href="#" data-reveal-id="week12">10+</a>

Revision as of 12:37, 16 September 2015


<!DOCTYPE html> Yale iGem 2015: Notebook

Lab Notebook