Difference between revisions of "Team:Hamilton McMaster"

Line 87: Line 87:
 
</div><!-- id-main -->
 
</div><!-- id-main -->
 
</main><!-- main -->
 
</main><!-- main -->
{{Template:Hamilton_McMaster_Footer}}
+
{{Hamilton_McMaster_Footer}}
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 16:38, 16 September 2015

McMaster iGEM

Automating Protein Production Using Multichromatic Light

Abstract

Light-based bacterial protein expression systems have been well documented. Tabor et al. demonstrated a multichromatic protein expression system in E. coli through the combination of the CcaR-CcaS green-light sensitive construct derived from cyanobacteria and a previously characterized red-light sensitive system. This could be leveraged for the expression of multiple genes by exposing the bacteria to different wavelengths of light, i.e. red and green. We propose the application of this construct to recombinant protein expression. Using genetic cloning and recombinant protein techniques, E. coli is concurrently transformed with three plasmids: a chromophore, a red-light sensitive system, and a green-light sensitive system. Protein expression is induced through shining red light on the bacterial population. Following this, cell lysis is triggered by shining green light, which is mediated by a T4 Holin/Endolysin system. This releases the protein of interest into the cell media, allowing for straightforward collection and purification. This system would have important applications in both research and industry, allowing for the optimization and potential automation of heterologous bacterial protein production.

Explore


Sponsors

{{Hamilton_McMaster_Footer}}