Difference between revisions of "Team:Bielefeld-CeBiTec/Results/HeavyMetals"

m
Line 288: Line 288:
  
 
<h2>To sum it up<h2>
 
<h2>To sum it up<h2>
<p>Our chromium sensor detects the presence of chromium <i>in vivo</i>, but the outcome differed from our expectations. We would have expected an increase in fluorescence by increasing chromium concentrations. Our <i>in vitro> data suggest that these decrease in fluorescence could be explained by chromium’s influence on <i>E. coli</i> which is not reflected in growth but shown by chromium´s influence on the cell extract. Before normalizing the <i>in vitro</i> data the same pattern as <i>in vivo</i> could be observed. After normalization an increase in signal is noticeable. Therefore with optimization our chromium sensor would be compatible to our cell free sensor system.</p>
+
<p>Our chromium sensor detects the presence of chromium <i>in vivo</i>, but the outcome differed from our expectations. We would have expected an increase in fluorescence by increasing chromium concentrations. Our <i>in vitro</i> data suggest that these decrease in fluorescence could be explained by chromium’s influence on <i>E. coli</i> which is not reflected in growth but shown by chromium´s influence on the cell extract. Before normalizing the <i>in vitro</i> data the same pattern as <i>in vivo</i> could be observed. After normalization an increase in signal is noticeable. Therefore with optimization our chromium sensor would be compatible to our cell free sensor system.</p>
 
</div>
 
</div>
  

Revision as of 18:01, 16 September 2015

iGEM Bielefeld 2015


Heavy Metals

Zusammenfassung in ganz wenigen Worten.

The different sensors we worked with were characterized in vivo as well as in vitro.



We tested the influence of each heavy metal on our sensors in vivo Therefore we used heavy metal concentrations based on heavy metal occurrences measured all over the world.


Adjusting the detection limit
Influence of heavy metals on the growth of E.coli KRX shown is the standard deviation of three biological replicates. For induction concentrations of 20 µg/L lead, 60 µg/L mercury, 60 µg/L chromium, 80 µg/L nickel, 40 mg/L copper which represent ten times of the WHO guideline were used.


The tested heavy metal concentrations had no negative effect on E. colis growth. Moreover there is no significant difference between the curves with heavy metals and the controls. This first experiment showed us, in vivo characterization with these sensors under the tested heavy metal concentrations is possible. Most of our sensors were cultivated in the BioLector. Due to the accuracy of this device we could measure our sample in duplicates.



Click on the test strip for more information about the heavy metals and how they can be detected:

teststrip