|
|
Line 42: |
Line 42: |
| <h3 class="wow fadeInDown">What is the number of ATP molecules that can be produced per second as a function of light irradiance that hits the bacterial membrane?</h3> | | <h3 class="wow fadeInDown">What is the number of ATP molecules that can be produced per second as a function of light irradiance that hits the bacterial membrane?</h3> |
| </header> | | </header> |
− | <p>Once a photon is absorbed by proteorhodopsin (PR), PR must complete its photocycle before it can absorb another photon [1]. At high light irradiance, this leads to saturation. For this we choose to exploit the Michaelis-Menten kinetics, where V_max is the maximum rate of the system and the Michaelis-Menten constant, K_m, is the substrate concentration at which the reaction rate is $\frac{1}{2}V\max$.</p> | + | <p>Once a photon is absorbed by proteorhodopsin (PR), PR must complete its photocycle before it can absorb another photon <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_1')" href="#refs_1">[1]</a></sup>. At high light irradiance, this leads to saturation. For this we choose to exploit the Michaelis-Menten kinetics, where V_max is the maximum rate of the system and the Michaelis-Menten constant, K_m, is the substrate concentration at which the reaction rate is $\frac{1}{2}V\max$.</p> |
− | <p>Walter et al. demonstrated that the system is analogous to a circuit (figure 1), in this circuit representation; the proteorhodopsin (PR) acts like a battery with internal resistance. [2][3]</p> | + | <p>Walter et al. demonstrated that the system is analogous to a circuit (figure 1), in this circuit representation; the proteorhodopsin (PR) acts like a battery with internal resistance. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup><sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_3')" href="#refs_3">[3]</a></sup></p> |
| <div class="row"> | | <div class="row"> |
| <div class="12u 12u(narrower)"> | | <div class="12u 12u(narrower)"> |
Line 49: |
Line 49: |
| <div class="captionbox" style="max-width:900px;"> | | <div class="captionbox" style="max-width:900px;"> |
| <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" title="Membrane as an electric circuit"><img src="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" alt="" style="width:100%;"/></a> | | <a class="fancybox" rel="group" href="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" title="Membrane as an electric circuit"><img src="https://static.igem.org/mediawiki/2015/0/0b/Unitn_pics_modeling_1.png" alt="" style="width:100%;"/></a> |
− | <p class="image_caption"><span>Membrane as an electric circuit</span>Electric circuit analogy for the membrane[2]</p> | + | <p class="image_caption"><span>Membrane as an electric circuit</span>Electric circuit analogy for the membrane <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> |
| </div> | | </div> |
| | | |
| <p>The current through the system is inversely related to the PR resistor and is dependent on light irradiance.</p> | | <p>The current through the system is inversely related to the PR resistor and is dependent on light irradiance.</p> |
| <p style="text-align:center">$R_{PR=}\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> | | <p style="text-align:center">$R_{PR=}\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> |
− | <p>Walter et al. determined that $V_{\max}$ is fixed by the boundary condition that $R_{PR≈}\frac{R_{\sin k}}{10}$ at the highest light irradiance $I=\frac{160mW}{cm^{2}}$. $\; R_{\sin k}≈R_{\mbox{re}s}≈10^{15}\; \Omega$ and $K_{m=}\frac{60mW}{cm^{2}}$. Where light irradiance of $\frac{20mW}{cm^{2}}\;$ is roughly equivalent to PR absorption from solar illumination at sea level. [2]</p> | + | <p>Walter et al. determined that $V_{\max}$ is fixed by the boundary condition that $R_{PR≈}\frac{R_{\sin k}}{10}$ at the highest light irradiance $I=\frac{160mW}{cm^{2}}$. $\; R_{\sin k}≈R_{\mbox{re}s}≈10^{15}\; \Omega$ and $K_{m=}\frac{60mW}{cm^{2}}$. Where light irradiance of $\frac{20mW}{cm^{2}}\;$ is roughly equivalent to PR absorption from solar illumination at sea level. <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_2')" href="#refs_2">[2]</a></sup></p> |
| <p>At the boundary condition:</p> | | <p>At the boundary condition:</p> |
| <p style="text-align:center">$Rpr=\frac{R_{\sin k}}{10}=10^{14}\Omega =\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> | | <p style="text-align:center">$Rpr=\frac{R_{\sin k}}{10}=10^{14}\Omega =\left( \frac{V_{\max }*I}{K_{m}+I} \right)^{-1}$</p> |
Line 65: |
Line 65: |
| <p>If an electron pair is composed of 10 protons and there is a net gain of 2.5 ATP molecules per electron pair then the number of ATP molecules produced per second is simply:</p> | | <p>If an electron pair is composed of 10 protons and there is a net gain of 2.5 ATP molecules per electron pair then the number of ATP molecules produced per second is simply:</p> |
| <p style="text-align:center">$N_{ATP}\; =\; \frac{1}{4}N_{Proton}\; =\; \frac{1}{4}*\frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p> | | <p style="text-align:center">$N_{ATP}\; =\; \frac{1}{4}N_{Proton}\; =\; \frac{1}{4}*\frac{V_{\max }\; I}{K_{m}+I}*\frac{V_{PR}}{q}$</p> |
− | <p>The rate of ATP production per second per bacterium as a function of light irradiance has been plotted in figure 2. From the graph, most ATP production rates per second per bacterium are in the range 10<sup>2</sup>-10<sup>3</sup>, after 5 minutes of illumination each cell would have produced a net gain of about 10<sup>5</sup> ATP molecules, which agrees with experiment [5].</p> | + | <p>The rate of ATP production per second per bacterium as a function of light irradiance has been plotted in figure 2. From the graph, most ATP production rates per second per bacterium are in the range 10<sup>2</sup>-10<sup>3</sup>, after 5 minutes of illumination each cell would have produced a net gain of about 10<sup>5</sup> ATP molecules, which agrees with experiment <sup><a class="sourced" onclick="javascript:scrollAndHighlight('refs_5')" href="#refs_5">[5]</a></sup>.</p> |
| | | |
| <div class="captionbox" style="max-width:900px;"> | | <div class="captionbox" style="max-width:900px;"> |
Line 93: |
Line 93: |
| </div> | | </div> |
| </section> | | </section> |
| + | |
| + | <section class="wrapper style4 container"> |
| + | <!-- Content --> |
| + | <header> |
| + | <h3 class="wow fadeInDown">References</h3> |
| + | </header> |
| + | |
| + | <ol type="1" class="sourcebox"> |
| + | <a class="anchor-off" name="refs_1" id="refs_1"></a> |
| + | <li><a href="http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3" target="_blank" class="sourcebox-link">Frequently Asked Questions - U.S. Energy Information Administration (EIA)</a></li> |
| + | |
| + | <a class="anchor-off" name="refs_2" id="refs_2"></a> |
| + | <li><a href="http://data.trendeconomy.com/industries/Energy_Consumption/EuropeanUnion" target="_blank" class="sourcebox-link">Trend Economy Data Platform</a></li> |
| + | |
| + | <a class="anchor-off" name="refs_3" id="refs_3"></a> |
| + | <li><a href="http://www.adb.org/sectors/energy/publications" target="_blank" class="sourcebox-link">Energy: Publications and Documents - Asian Developement Bank</a></li> |
| + | |
| + | <a class="anchor-off" name="refs_4" id="refs_4"></a> |
| + | <li><a href="http://shrinkthatfootprint.com/average-household-electricity-consumption" target="_blank" class="sourcebox-link">"Shrink That Footprint" (Lindsay Wilson)</a></li> |
| + | |
| + | <a class="anchor-off" name="refs_5" id="refs_5"></a> |
| + | <li><a href="http://www.greenspaceschattanooga.org/green-your-home/" target="_blank" class="sourcebox-link">5 Simple Ways to Green Your Home - green|spaces NPO</a></li> |
| + | </ol> |
| + | </section> |
| <!-- Footer --> | | <!-- Footer --> |
| </html>{{UNITN-Trento/mainFooter}}<html> | | </html>{{UNITN-Trento/mainFooter}}<html> |