|
|
Line 48: |
Line 48: |
| <tr height="20px"><td width="20%"><a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a></td><td width="10%">Composite</td><td width="30%">J23100_rhlR_TT_Plux_cmRssrA</td><td width="20%">Jun Kawamura</td><td width="10%">1710</td><td width="10%">Work</td></tr></tbody></table></div> | | <tr height="20px"><td width="20%"><a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a></td><td width="10%">Composite</td><td width="30%">J23100_rhlR_TT_Plux_cmRssrA</td><td width="20%">Jun Kawamura</td><td width="10%">1710</td><td width="10%">Work</td></tr></tbody></table></div> |
| </tbody></table></div> | | </tbody></table></div> |
− |
| |
| <p></p> | | <p></p> |
− | <h2 class="smalltitle">1. <i>fim</i> switch(Tokyo_Tech) with GFP: BBa_K1632002, BBa_K1632003</h2> | + | <p></p> |
− | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632002" target="_brank">BBa_K1632002</a> and <a href="http://parts.igem.org/Part:BBa_K1632003" target="_brank">BBa_K1632003</a> meet the criteria of the Bronze Medal</h3> | + | <h2 class="smalltitle">1. Best New Improved Part: BBa_K1632020, BBa_K1632022, BBa_K1632023</h2> |
| + | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632020" target="_brank">BBa_K1632020</a>, <a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a> and <a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a> meet the criteria of the Gold Medal</h3> |
| <p></p> | | <p></p> |
| <div class="text"> | | <div class="text"> |
| <ul> | | <ul> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632002" target="_brank">BBa_K1632002</a><br><i>fim</i> switch[default ON](Tokyo_Tech/J23119)_gfp</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632020" target="_brank">BBa_K1632020</a><br>rbs_cmRssrA</li> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632003" target="_brank">BBa_K1632003</a><br><i>fim</i> switch[default OFF](Tokyo_Tech/J23119)_gfp</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a><br>J23100_lasR_TT_Plux_cmRssrA</li> |
| + | <li><a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a><br>J23100_rhlR_TT_Plux_cmRssrA</li> |
| </ul> | | </ul> |
| </div> | | </div> |
| <p></p> | | <p></p> |
− | <p class="text">We designed another <i>fim</i> switch with a standardized interchangeable promotor, <i>fim</i> switch (Tokyo_Tech). A difference between the wild type <i>fim</i> switch and the <i>fim</i> switch (Tokyo_Tech) is that we replaced the sigma 70 promoter to the J23119 promotor" (<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>). We also inserted two restriction enzyme sites in both the front (SalI and BamHI) and the back (BglII and MluI) of the promotor. By inserting the restriction enzymes, our <i>fim</i> switch (Tokyo_Tech) turned into a <i>fim</i> switch with a standardized interchangeable promotor (Fig.5-1-1-1).</p>
| |
| <p></p> | | <p></p> |
− | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/c/cb/Tokyo_Tech_parts1.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-1-1. Design of Fim Switch (Tokyo_Tech)</h4></tr></td></tbody></table> | + | <p class="text">At the first stage of our wet experiment, we used “rbs_cmR” (<a href="http://parts.igem.org/Part:BBa_K395610" target="_brank">BBa_K395610</a> by iGEM 2010 team Tokyo_Tech). However, the result showed a leaky expression of CmR. We inserted an ssrA degradation tag to the C-terminal of CmR. In the our experiment using the J23100_lasR_TT_Plux_cmRssrA (<a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a>) and J23100_rhlR_TT_Plux_cmRssrA (<a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a>), we could not observe cell growth for cells that owned the ssrA-tagged plasmid, in the absence of AHL (Fig.5-3-1-1). From our experiment, cmRssrA work better than cmR without ssrA tag for our project.</p> |
− | <p><br><br></p> | + | <p></p> |
− | <h2 class="smalltitle">2. <i>fim</i> switch(wild-type) with GFP: BBa_K1632007, BBa_K1632008</h2> | + | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/e/ed/Tokyo_Tech_parts4.png" width="60%"></td></tr> |
− | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a> meet the criteria of the Silver Medal</h3> | + | <tr><td align="center"><h4 class="fig">Fig.5-3-1-1. The cell’s growth with Cm</h4></td></tr></tbody></table> |
| + | <p></p> |
| + | <h2 class="smalltitle">2. <i>fimB</i>(wild-type) controlled arabinose: BBa_K1632012</h2> |
| + | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a> meet the criteria of the Silver Medal</h3> |
| <p></p> | | <p></p> |
| <div class="text"> | | <div class="text"> |
| <ul> | | <ul> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a><br><i>fim</i> switch[default ON](wild-type)_gfp</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a><br>Pbad/<i>araC</i>_fimB(wild-type)</li> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a><br><i>fim</i> switch[default OFF](wild-type)_gfp</li>
| + | |
− | </ul>
| + | |
| </div> | | </div> |
| <p></p> | | <p></p> |
| <p></p> | | <p></p> |
− | <p class="text">We are the first team in iGEM to successfully construct both the <i>fim</i> switch default state ON and the <i>fim</i> switch default state OFF and assay them. These <i>fim</i> switch is derived from a wild type and the gene sequence is the same as that of a wild type E.coli. The <i>fim</i> switch is inverted by the Fim recombinase. Therefore, we can regulate the expression of the gene downstream of the <i>fim</i> switch by adding the Fim recombinase. From the flow cytometers assay, they work ideally.</p> | + | <p class="text">FimB (<a href="http://parts.igem.org/Part:BBa_K1632010" target="_brank">BBa_K1632010</a>) is a Fim recombinase. This is derived from the wild type MG1655. FimB invert the <i>fim</i> switch from the ON state to the OFF state and from the OFF state to the ON state (Fig.5-1-2-1.).</p> |
− | | + | <p class="text">From our experimental results, we confirmed that the FimB protein inverts the <i>fim</i> switch in the ON-to-OFF direction and in the OFF-to-ON direction with approximately equal probability and works ideally (Fig.5-1-2-2.). The expression of FimB is controlled by arabinose in <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a>.</p> |
− | <h2 class="smalltitle">3. <i>fimE</i>(wild-type) controlled by AHL: BBa_K1632018, BBa_K1632019</h2> | + | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/3/3f/Tokyo_Tech_parts6.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-1-2-1. <i>fim</i> switch is inverted by two recombinases, FimB and FimE. These proteins have distinct activities. The FimB protein inverts fim switch in the ON-to-OFF and the OFF-to-ON direction with approximately equal probability</h4></td></tr></tbody></table> |
| + | <p></p> |
| + | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/9/9d/Tokyo_Tech_parts7.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-1-2-2. The result of our assay used <a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a>, <a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a> and <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a> with flow cytometers.</h4></td></tr></tbody></table> |
| + | <p></p> |
| + | <h2 class="smalltitle">3. <i>fim</i> switch(wild-type) with GFP: BBa_K1632007, BBa_K1632008</h2> |
| + | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a> and <a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a> meet the criteria of the Silver Medal</h3> |
| + | <p></p> |
| <div class="text"> | | <div class="text"> |
| <ul> | | <ul> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632018" target="_brank">BBa_K1632018</a><br>J23100_lasR_TT_Plux_fimE (wild-type)</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a><br><i>fim</i> switch[default ON](wild-type)_gfp</li> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632019" target="_brank">BBa_K1632019</a><br>J23100_rhlR_TT_Plux_fimE (wild-type)</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a><br><i>fim</i> switch[default OFF](wild-type)_gfp</li> |
| </ul> | | </ul> |
| </div> | | </div> |
| <p></p> | | <p></p> |
− | <p class="text">FimE is a Fim recombinase. This Fim recombinase is derived from the wild type MG1655. FimE invert the <i>fim</i> switch from the ON state to the OFF state. The expression of these Fim recombinases are controlled by AHL in <a href="http://parts.igem.org/Part:BBa_K1632018" target="_brank">BBa_K1632018</a> and <a href="http://parts.igem.org/Part:BBa_K1632019" target="_brank">BBa_K1632019</a>.</p>
| |
| <p></p> | | <p></p> |
| + | <p class="text">We are the first team in iGEM to successfully construct both the <i>fim</i> switch default state ON and the <i>fim</i> switch default state OFF and assay them. These <i>fim</i> switch is derived from a wild type and the gene sequence is the same as that of a wild type E.coli. The <i>fim</i> switch is inverted by the Fim recombinase. Therefore, we can regulate the expression of the gene downstream of the <i>fim</i> switch by adding the Fim recombinase. From the flow cytometers assay, they work ideally.</p> |
| <p></p> | | <p></p> |
− | <h2 class="smalltitle">4. <i>fimB</i>(wild-type) controlled arabinose: BBa_K1632012</h2> | + | <h2 class="smalltitle">4. <i>fim</i> switch(Tokyo_Tech) with GFP: BBa_K1632002, BBa_K1632003</h2> |
− | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a> meet the criteria of the Silver Medal</h3> | + | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632002" target="_brank">BBa_K1632002</a> and <a href="http://parts.igem.org/Part:BBa_K1632003" target="_brank">BBa_K1632003</a> meet the criteria of the Bronze Medal</h3> |
| <p></p> | | <p></p> |
| <div class="text"> | | <div class="text"> |
| <ul> | | <ul> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a><br>Pbad/<i>araC</i>_fimB(wild-type)</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632002" target="_brank">BBa_K1632002</a><br><i>fim</i> switch[default ON](Tokyo_Tech/J23119)_gfp</li> |
| + | <li><a href="http://parts.igem.org/Part:BBa_K1632003" target="_brank">BBa_K1632003</a><br><i>fim</i> switch[default OFF](Tokyo_Tech/J23119)_gfp</li> |
| + | </ul> |
| </div> | | </div> |
| <p></p> | | <p></p> |
| + | <p class="text">We designed another <i>fim</i> switch with a standardized interchangeable promotor, <i>fim</i> switch (Tokyo_Tech). A difference between the wild type <i>fim</i> switch and the <i>fim</i> switch (Tokyo_Tech) is that we replaced the sigma 70 promoter to the J23119 promotor" (<a href="http://parts.igem.org/Part:BBa_J23119" target="_brank">BBa_J23119</a>). We also inserted two restriction enzyme sites in both the front (SalI and BamHI) and the back (BglII and MluI) of the promotor. By inserting the restriction enzymes, our <i>fim</i> switch (Tokyo_Tech) turned into a <i>fim</i> switch with a standardized interchangeable promotor (Fig.5-3-4-1).</p> |
| <p></p> | | <p></p> |
− | <p class="text">FimB (<a href="http://parts.igem.org/Part:BBa_K1632010" target="_brank">BBa_K1632010</a>) is a Fim recombinase. This is derived from the wild type MG1655. FimB invert the <i>fim</i> switch from the ON state to the OFF state and from the OFF state to the ON state (Fig.5-1-3-1.).</p>
| + | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/c/cb/Tokyo_Tech_parts1.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-3-4-1. Design of Fim Switch (Tokyo_Tech)</h4></tr></td></tbody></table> |
− | <p class="text">From our experimental results, we confirmed that the FimB protein inverts the <i>fim</i> switch in the ON-to-OFF direction and in the OFF-to-ON direction with approximately equal probability and works ideally (Fig.5-1-3-2.). The expression of FimB is controlled by arabinose in <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a>.</p>
| + | <p><br><br></p> |
− | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/3/3f/Tokyo_Tech_parts6.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-1-3-1. <i>fim</i> switch is inverted by two recombinases, FimB and FimE. These proteins have distinct activities. The FimB protein inverts fim switch in the ON-to-OFF and the OFF-to-ON direction with approximately equal probability</h4></td></tr></tbody></table> | + | <h2 class="smalltitle">5. <i>fimE</i>(wild-type) controlled by AHL: BBa_K1632018, BBa_K1632019</h2> |
− | <p></p> | + | |
− | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/9/9d/Tokyo_Tech_parts7.png" width="60%"></td></tr><tr><td align="center"><h4 class="fig">Fig.5-1-3-2. The result of our assay used <a href="http://parts.igem.org/Part:BBa_K1632007" target="_brank">BBa_K1632007</a>, <a href="http://parts.igem.org/Part:BBa_K1632008" target="_brank">BBa_K1632008</a> and <a href="http://parts.igem.org/Part:BBa_K1632012" target="_brank">BBa_K1632012</a> with flow cytometers.</h4></td></tr></tbody></table> | + | |
− | <h2 class="smalltitle">5. Best New Improved Part: BBa_K1632020, BBa_K1632022, BBa_K1632023</h2> | + | |
− | <h3 class="sub5"> <a href="http://parts.igem.org/Part:BBa_K1632020" target="_brank">BBa_K1632020</a>, <a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a> and <a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a> meet the criteria of the Gold Medal</h3> | + | |
− | <p></p>
| + | |
| <div class="text"> | | <div class="text"> |
| <ul> | | <ul> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632020" target="_brank">BBa_K1632020</a><br>rbs_cmRssrA</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632018" target="_brank">BBa_K1632018</a><br>J23100_lasR_TT_Plux_fimE (wild-type)</li> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a><br>J23100_lasR_TT_Plux_cmRssrA</li> | + | <li><a href="http://parts.igem.org/Part:BBa_K1632019" target="_brank">BBa_K1632019</a><br>J23100_rhlR_TT_Plux_fimE (wild-type)</li> |
− | <li><a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a><br>J23100_rhlR_TT_Plux_cmRssrA</li>
| + | |
| </ul> | | </ul> |
| </div> | | </div> |
| <p></p> | | <p></p> |
| + | <p class="text">FimE is a Fim recombinase. This Fim recombinase is derived from the wild type MG1655. FimE invert the <i>fim</i> switch from the ON state to the OFF state. The expression of these Fim recombinases are controlled by AHL in <a href="http://parts.igem.org/Part:BBa_K1632018" target="_brank">BBa_K1632018</a> and <a href="http://parts.igem.org/Part:BBa_K1632019" target="_brank">BBa_K1632019</a>.</p> |
| <p></p> | | <p></p> |
− | <p class="text">At the first stage of our wet experiment, we used “rbs_cmR” (<a href="http://parts.igem.org/Part:BBa_K395610" target="_brank">BBa_K395610</a> by iGEM 2010 team Tokyo_Tech). However, the result showed a leaky expression of CmR. We inserted an ssrA degradation tag to the C-terminal of CmR. In the our experiment using the J23100_lasR_TT_Plux_cmRssrA (<a href="http://parts.igem.org/Part:BBa_K1632022" target="_brank">BBa_K1632022</a>) and J23100_rhlR_TT_Plux_cmRssrA (<a href="http://parts.igem.org/Part:BBa_K1632023" target="_brank">BBa_K1632023</a>), we could not observe cell growth for cells that owned the ssrA-tagged plasmid, in the absence of AHL (Fig.5-1-4-2). From our experiment, cmRssrA work better than cmR without ssrA tag for our project.</p>
| |
− | <p></p>
| |
− | <table width="940px"><tbody><tr><td align="center"><img src="https://static.igem.org/mediawiki/2015/e/ed/Tokyo_Tech_parts4.png" width="60%"></td></tr>
| |
− | <tr><td align="center"><h4 class="fig">Fig.5-1-4-1. The cell’s growth with Cm</h4></td></tr></tbody></table>
| |
| <p></p> | | <p></p> |
− |
| |
| | | |
| | | |
Tokyo Tech 2015 iGEM Team Composite Parts
Name | Type | Description | Design | Length(bp) | Experiment |
BBa_K1632002 | Regulatory | fim switch[default ON](Tokyo_Tech/J23119)_gfp | Riku Shinohara | 1178 | Work |
BBa_K1632003 | Regulatory | fim switch[default OFF](Tokyo_Tech/J23119)_gfp | Riku Shinohara | 1178 | Work |
BBa_K1632007 | Composite | fim switch[default ON](wild-type)_gfp | Riku Shinohara | 1128 | Work |
BBa_K1632008 | Composite | fim switch[default OFF](wild-type)_gfp | Riku Shinohara | 1128 | Work |
BBa_K1632012 | Composite | PBAD/araC_fimB(wild-type) | Riku Shinohara | 1839 | Work |
BBa_K1632013 | Composite | Pbad/araC_fimE(wild-type) | Riku Shinohara | 1835 | Work |
BBa_K1632018 | Composite | J23100_lasR_TT_Plux_fimE(wild-type) | Jun Kawamura | 1609 | |
BBa_K1632019 | Composite | J23100_rhlR_TT_Plux_fimE(wild-type) | Jun Kawamura | 1615 | |
BBa_K1632020 | Composite | rbs_cmRssrA | Jun Kawamura | 712 | Work |
BBa_K1632022 | Composite | J23100_lasR_TT_Plux_cmRssrA | Jun Kawamura | 1704 | Work |
BBa_K1632023 | Composite | J23100_rhlR_TT_Plux_cmRssrA | Jun Kawamura | 1710 | Work |
1. Best New Improved Part: BBa_K1632020, BBa_K1632022, BBa_K1632023
At the first stage of our wet experiment, we used “rbs_cmR” (BBa_K395610 by iGEM 2010 team Tokyo_Tech). However, the result showed a leaky expression of CmR. We inserted an ssrA degradation tag to the C-terminal of CmR. In the our experiment using the J23100_lasR_TT_Plux_cmRssrA (BBa_K1632022) and J23100_rhlR_TT_Plux_cmRssrA (BBa_K1632023), we could not observe cell growth for cells that owned the ssrA-tagged plasmid, in the absence of AHL (Fig.5-3-1-1). From our experiment, cmRssrA work better than cmR without ssrA tag for our project.
|
Fig.5-3-1-1. The cell’s growth with Cm |
2. fimB(wild-type) controlled arabinose: BBa_K1632012
BBa_K1632012 meet the criteria of the Silver Medal
FimB (BBa_K1632010) is a Fim recombinase. This is derived from the wild type MG1655. FimB invert the fim switch from the ON state to the OFF state and from the OFF state to the ON state (Fig.5-1-2-1.).
From our experimental results, we confirmed that the FimB protein inverts the fim switch in the ON-to-OFF direction and in the OFF-to-ON direction with approximately equal probability and works ideally (Fig.5-1-2-2.). The expression of FimB is controlled by arabinose in BBa_K1632012.
|
Fig.5-1-2-1. fim switch is inverted by two recombinases, FimB and FimE. These proteins have distinct activities. The FimB protein inverts fim switch in the ON-to-OFF and the OFF-to-ON direction with approximately equal probability |
3. fim switch(wild-type) with GFP: BBa_K1632007, BBa_K1632008
We are the first team in iGEM to successfully construct both the fim switch default state ON and the fim switch default state OFF and assay them. These fim switch is derived from a wild type and the gene sequence is the same as that of a wild type E.coli. The fim switch is inverted by the Fim recombinase. Therefore, we can regulate the expression of the gene downstream of the fim switch by adding the Fim recombinase. From the flow cytometers assay, they work ideally.
4. fim switch(Tokyo_Tech) with GFP: BBa_K1632002, BBa_K1632003
We designed another fim switch with a standardized interchangeable promotor, fim switch (Tokyo_Tech). A difference between the wild type fim switch and the fim switch (Tokyo_Tech) is that we replaced the sigma 70 promoter to the J23119 promotor" (BBa_J23119). We also inserted two restriction enzyme sites in both the front (SalI and BamHI) and the back (BglII and MluI) of the promotor. By inserting the restriction enzymes, our fim switch (Tokyo_Tech) turned into a fim switch with a standardized interchangeable promotor (Fig.5-3-4-1).
|
Fig.5-3-4-1. Design of Fim Switch (Tokyo_Tech) |
5. fimE(wild-type) controlled by AHL: BBa_K1632018, BBa_K1632019
FimE is a Fim recombinase. This Fim recombinase is derived from the wild type MG1655. FimE invert the fim switch from the ON state to the OFF state. The expression of these Fim recombinases are controlled by AHL in BBa_K1632018 and BBa_K1632019.