The Lux System
The bacterial lux system is principally composed of five genes - LuxA, LuxB, LuxC, LuxD, and LuxE.
The proteins coded by these genes associate to form two enzymatic complexes, with LuxA+LuxB coding for luciferase itself and LuxCDE coding for a fatty acid reductase complex. This reductase complex serves to provide the substrates (fatty aldehydes) for the system’s bioluminescent reaction1. Catalyzed by luciferase, these aldehydes react with FMNH2 and oxygen, emitting a photon and producing a fatty acid, FMN, and water1. FMNH2 is then regenerated by a flavin reductase1.
Substrates are recruited by the transferase and moved to a synthetase-reductase complex. These associated enzymes produce a microenvironment that stabilizes reaction intermediates.
Because the luminescent yield of the system is based on the function of these two enzymatic complexes, modifying the protein levels of each enzyme allows us to control the system’s output.
References
[1] Meighen, Edward A. "Enzymes and genes from the lux operons of bioluminescent bacteria." Annual Reviews in Microbiology 42.1 (1988): 151-176.
[2] Meighen, E. A., Nicoli M. Z., and Hastings, J. W. “Functional Differences of the Nonidentical Subunits of Bacterial Luciferase, Properties of Hybrids of Native and Chemically Modified Bacterial Luciferase.” Biochemistry (2003)