|
|
Line 201: |
Line 201: |
| <h3 class="classic-title" style="margin-top:50px"><span>Model</span></h3> | | <h3 class="classic-title" style="margin-top:50px"><span>Model</span></h3> |
| <h4><em>Wilcoxon Rank Sum Test of Block Design</em></h4> | | <h4><em>Wilcoxon Rank Sum Test of Block Design</em></h4> |
− | <p>In view of the unknown distributions and different variances of the signals by our Paired dCas9 Reporter System, we chose a non-parametric statistics method called Wilcoxon Rank Sum Test of Block Design with the data Rank instead of ANOVA. <br> | + | <p>In view of the unknown distributions and different variances of the signals by our Paired dCas9 Reporter System, we chose a non-parametric statistics method called Wilcoxon Rank Sum Test of Block Design with the data Rank instead of ANOVA.</p> |
| + | <p> |
| In the Block Design, we regarded the same gRNA detection of two treatment, i.e. target and mismatch DNA, as a block. To test the difference between two treatments, we test the null hypothesis that two treatment have no difference. The Wilcoxon Rank Sum statistics <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'>of each block is calculated first by | | In the Block Design, we regarded the same gRNA detection of two treatment, i.e. target and mismatch DNA, as a block. To test the difference between two treatments, we test the null hypothesis that two treatment have no difference. The Wilcoxon Rank Sum statistics <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'>of each block is calculated first by |
| <div align="center" class='row'> | | <div align="center" class='row'> |
Line 215: |
Line 216: |
| so <img alt='Peking-Analysis-xy_sample.gif' src="https://static.igem.org/mediawiki/2015/e/ef/Peking-Analysis-xy_sample.gif" class='formula-inline'>, which implies that <img alt='Peking-Analysis-R_sample.gif' src="https://static.igem.org/mediawiki/2015/8/81/Peking-Analysis-R_sample.gif" class='formula-inline'><br> | | so <img alt='Peking-Analysis-xy_sample.gif' src="https://static.igem.org/mediawiki/2015/e/ef/Peking-Analysis-xy_sample.gif" class='formula-inline'>, which implies that <img alt='Peking-Analysis-R_sample.gif' src="https://static.igem.org/mediawiki/2015/8/81/Peking-Analysis-R_sample.gif" class='formula-inline'><br> |
| Under the null hypothesis, after calculate all the possible order of two sample sets, the distributions of the statistics <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'> are shown as below: | | Under the null hypothesis, after calculate all the possible order of two sample sets, the distributions of the statistics <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'> are shown as below: |
− | <table border='1' style='margin-top:0px;padding:10px' class='col-md-12'> | + | <table border='1' style='margin-top:0px;margin-bottom:10px;padding:10px' class='col-md-12'> |
| <tr> | | <tr> |
| <th>W<sub>j</sub></th> | | <th>W<sub>j</sub></th> |
Line 230: |
Line 231: |
| <p>Due to the small sample size, the minimal significance level is 0.05, which means only if <img alt='Peking-Analysis-Wj%3D15.gif' src="https://static.igem.org/mediawiki/2015/e/e0/Peking-Analysis-Wj%3D15.gif" class='formula-inline'> leads to a rejection of the null hypothesis, in other words only when the minimum value of <img alt='Peking-Analysis-X_j.gif' src="https://static.igem.org/mediawiki/2015/6/60/Peking-Analysis-X_j.gif" class='formula-inline'> was greater than the maximum value of <img alt='Peking-Analysis-Y_j.gif' src="https://static.igem.org/mediawiki/2015/7/79/Peking-Analysis-Y_j.gif" class='formula-inline'> to accept the alternative hypothesis instead of the null hypothesis, the two sets of data is significantly different. So the Wilcoxon Rank Sum Test may face challenge in single block test when the experimental and control group are slightly different.However, by using Block Design, we can integrate data from m blocks similar to the idea of ANOVA. We calculated the sum of <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'> as the statistics. | | <p>Due to the small sample size, the minimal significance level is 0.05, which means only if <img alt='Peking-Analysis-Wj%3D15.gif' src="https://static.igem.org/mediawiki/2015/e/e0/Peking-Analysis-Wj%3D15.gif" class='formula-inline'> leads to a rejection of the null hypothesis, in other words only when the minimum value of <img alt='Peking-Analysis-X_j.gif' src="https://static.igem.org/mediawiki/2015/6/60/Peking-Analysis-X_j.gif" class='formula-inline'> was greater than the maximum value of <img alt='Peking-Analysis-Y_j.gif' src="https://static.igem.org/mediawiki/2015/7/79/Peking-Analysis-Y_j.gif" class='formula-inline'> to accept the alternative hypothesis instead of the null hypothesis, the two sets of data is significantly different. So the Wilcoxon Rank Sum Test may face challenge in single block test when the experimental and control group are slightly different.However, by using Block Design, we can integrate data from m blocks similar to the idea of ANOVA. We calculated the sum of <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'> as the statistics. |
| <div align='center'> | | <div align='center'> |
− | <img class='formula-line' alt="Peking-Analysis-W_sumWj.gif" src="https://static.igem.org/mediawiki/2015/2/29/Peking-Analysis-W_sumWj.gif"> | + | <img class='formula-line' alt="Peking-Analysis-W_sumWj.gif" src="https://static.igem.org/mediawiki/2015/2/29/Peking-Analysis-W_sumWj.gif" style='margin-top:5px;margin-bottom:5px'> |
| </div> | | </div> |
| The Wilcoxon Rank Sum <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'> from m blocks are independent and identically distributed (i.i.d), according to the central limit theorem (CLT), as m approaches infinity, the random variable <img class='big-formula-inline' alt="Peking-Analysis-W_BD_statistics.gif" src="https://static.igem.org/mediawiki/2015/6/68/Peking-Analysis-W_BD_statistics.gif"> converges in distribution to a standard normal distribution <i>N</i>(0,1) | | The Wilcoxon Rank Sum <img alt='Peking-Analysis-W_j.gif' src="https://static.igem.org/mediawiki/2015/1/15/Peking-Analysis-W_j.gif" class='formula-inline'> from m blocks are independent and identically distributed (i.i.d), according to the central limit theorem (CLT), as m approaches infinity, the random variable <img class='big-formula-inline' alt="Peking-Analysis-W_BD_statistics.gif" src="https://static.igem.org/mediawiki/2015/6/68/Peking-Analysis-W_BD_statistics.gif"> converges in distribution to a standard normal distribution <i>N</i>(0,1) |