Difference between revisions of "Team:USTC/Modeling"

Line 2: Line 2:
 
<html>
 
<html>
 
<div class="Nav2nd row white z-depth-1">
 
<div class="Nav2nd row white z-depth-1">
    <div class="Nav1th col s2 blue darken-3" >
+
  <div class="Nav1th col s2 blue darken-3" >
        <a class="dropdown-button btn white-text" data-beloworigin="true"data-hover="true" href="#!" data-activates="Nav-dropdown" >MODELING<i class="material-icons">arrow_drop_down</i></a>
+
    <a class="dropdown-button btn white-text" data-beloworigin="true"data-hover="true" href="#!" data-activates="Nav-dropdown" >MODELING<i class="material-icons">arrow_drop_down</i></a>
      </div>
+
    <div class="col s10" style="z-index:2;">
+
        <ul class="tabs tabs-wrapper transparent">
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Film-Candidate" class="blue-text active waves-effect waves-light">Film Candidate</a>
+
            </li>
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Adhesion-Dynamics" class="blue-text waves-effect waves-light">Adhesion Dynamics</a>
+
            </li>
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Interference-Fringes-Analysis" class="blue-text waves-effect waves-light">Interference Fringes Analysis</a>
+
            </li>
+
            <li class="tab col l2 m2 s2">
+
                <a href="#ROSE-Prediction" class="blue-text waves-effect waves-light">ROSE Prediction</a>
+
            </li>
+
        </ul> 
+
 
     </div>
 
     </div>
 +
  <div class="col s10" style="z-index:2;">
 +
    <ul class="tabs tabs-wrapper transparent">
 +
      <li class="tab col l2 m2 s2">
 +
        <a href="#Film-Candidate" class="blue-text active waves-effect waves-light">Film Candidate</a>
 +
      </li>
 +
      <li class="tab col l2 m2 s2">
 +
        <a href="#Adhesion-Dynamics" class="blue-text waves-effect waves-light">Adhesion Dynamics</a>
 +
      </li>
 +
      <li class="tab col l2 m2 s2">
 +
        <a href="#Interference-Fringes-Analysis" class="blue-text waves-effect waves-light">Interference Fringes Analysis</a>
 +
      </li>
 +
      </li>
 +
      <li class="tab col l2 m2 s2">
 +
        <a href="#Calibration" class="blue-text waves-effect waves-light">Calibration</a>
 +
      </li>
 +
      <li class="tab col l2 m2 s2">
 +
        <a href="#ROSE-Prediction" class="blue-text waves-effect waves-light">ROSE Prediction</a>
 +
      </li>
 +
    </ul> 
 +
  </div>
 
</div>
 
</div>
 
<ul id='Nav-dropdown' class='dropdown-content'>
 
<ul id='Nav-dropdown' class='dropdown-content'>
Line 38: Line 42:
  
 
<div class="row">
 
<div class="row">
    <div class="col offset-m1 offset-l2 s12 m10 l8">
+
  <div class="col offset-m1 offset-l2 s12 m10 l8">
        <div id="Film-Candidate" class="row">
+
    <div id="Film-Candidate" class="row">
            <div class="card hoverable">
+
      <div class="card hoverable">
                <div class="col s12 m9">
+
        <div class="col s12 m9">
                    <div class="card-content">
+
          <div class="card-content">
                        <p>This part starts with the bacteria movement ability, analyse the interaction between bacteria and the special film, and obtain the requests of the material properties eventually.</p>
+
            <h4 id="Film-Candidates-overview" class="scrollspy">Overview</h4>
                        <h3 id="force-of-single-bacteria" class="scrollspy">Force of single bacteria</h3>
+
            <p>This part starts with the bacteria movement ability, analyse the interaction between bacteria and the special film, and obtain the requests of the material properties eventually.</p>
                        <p>Assume the force of single bacteria is \(F_{0}\).</p>
+
            <div class="divider"></div>
                        <p>When bacteria move without outer condition with the speed of \(V_{1}\),</p>
+
                        <p>\(F_{0}=f_{1}=kV_{1}\)</p>
+
                        <p>When bacteria drag by gravity in solution,</p>
+
                        <p>\(mg-\rho Vg=f_{2}=kV_{2}\)</p>
+
                        <p>Because the motor ability of each bacteria does not change.</p>
+
                        <p>According to the data in literature, the speed of movement (\(V_{1}\))is about ~10\(\mu m\)/s, the speed of sedimentation (\(V_{1}\)) ~\(\mu m\)/s, the size of bacteria ~\(\mu m\).</p>
+
                        <p>So we could solve the equations and get <strong>\(F_{0}\sim 10^{-13} N\)</strong>.</p>
+
                        <div class="divider"></div>
+
  
                        <h3 id="modeling-of-deformation" class="scrollspy">Modeling of deformation</h3>
 
                        <p><strong>The geometric size of film</strong></p>
 
                        <p>The film is a circle with the <strong>radius(r)</strong> of <strong>2cm</strong>.</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/a/ad/20150822003.png" alt=""></p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/6/66/20150908058.jpg" alt=""></p>
 
                        <p>(The film shows in green edge. The clip that used to fix the film shows in yellow edge.)</p>
 
                        <p>The <strong>thickness(d)</strong> of film is <strong>0.1mm</strong>.</p>
 
                        <p>Assume the <strong>numerical density(σ)</strong> of bacteria is <strong>\(\sim 10000/mm^2\)</strong>.(That means a single bacteria occupying <strong>~100 sq.\(\mu m\).</strong>)</p>
 
                        <p>Addition pressure: <strong>\(\Delta P= \sum \frac{F}{S}=\sigma F_{0}\)</strong></p>
 
                        <p>So the addition pressure <strong>ΔP</strong> is <strong>~0.001Pa</strong>.</p>
 
                        <p>The wave length we used is <strong>650nm</strong>. We need ~ \(\mu m\)deformation.</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c0/20150831001.png" alt=""></p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/e/ed/20150822006.png" alt=""></p>
 
                        <p>As the deformation range(h) is much more smaller than the radius(r) of the film, so we can get equations through mechanical equilibrium and geometry constraint:</p>
 
                        <p>\(f=F\times \frac{h}{r}\)<p>
 
                        <p>\(\frac{F}{2\pi rd}=\frac{\Delta r}{r}\times G\)<p>
 
                        <p>\(\Delta r=\frac{1}{2}\times r\times (\frac{h}{r})^{2}\)<p>
 
                        <br>('f' is the resultant force of the bacteria, 'F' is the tensile force in the film, 'h' is the deformation distance, 'r' is the radius of the film,'Δr' is the variation of the radius(r), 'd' is the thickness of the film. )</p>
 
                        <div class="divider"></div>
 
  
                        <h3 id="material-requests" class="scrollspy">Material requests</h3>
+
            <h4 id="force-of-single-bacterium" class="scrollspy">Force of Single Bacterium</h4>
                        <p>Assume that 1% of bacteria are push ahead statistically.</p>
+
            <p>The interaction between bacteria and film is essential for our work. To characterize the additional pressure exerted by bacteria, we need to calculate the force produced by single bacterium at beginning. </p>
                        <p>Then \(\Delta P=0.01 \times \sigma F_{0}\), and solve these equations.</p>
+
            <p>Assume the driving force of the movement of single bacteria is \(F_{0}\) in horizontal plain.</p>
                        <p>Thus we require the Young modulus of material <strong>'G' &lt;1GPa</strong> to get ~um order deformation.</p>
+
            <p>When bacteria move without extra environmental impact, let the speed as V1,</p>
                        <p>There are some common material's Young modulus,</p>
+
            <p>\(F_{0}=f_{1}=kV_{1}\)</p>
                        <table class="striped">
+
            <p>Where f1 means the resistant force bacteria containing in water solution, k is a constant called drag coefficient at this conditions.</p>
                            <thead>
+
            <p>Besides, in the gravitational field, if we consider bacteria dragged by gravity in solution, then the static equation is revised as below, </p>
                                <tr>
+
            <p>\(mg-\rho Vg=f_{2}=kV_{2}\)</p>
                                    <th>Material type</th>
+
            <p>Where rho represents the density of solution, V indicates the extra volume of liquid immersed with bacteria, g means the acceleration of gravity. Because of the same interaction between solution and bacteria, in gravitational field, bacteria share the same k with the horizontal movement constant.</p>
                                    <th>Young modulus(GPa)</th>
+
            <p>Assume the motor ability of each bacteria does not change. Then, in accordance with the data in previous research, the speed of bacterial movement((\(V_{1}\))) is approximately ~10\(\mu m\)/s, while the speed of bacterial sedimentation((\(V_{2}\))) ~\(\mu m\)/s.</p>
                                </tr>
+
            <p>And considering the size of single bacterium, assume bacteria as cylinder, whose diameter equals 0.5um and length is 1~3\(\mu m\). </p>
                            </thead>
+
            <p>Calculating with all data, consequently, we concluded that driving force of bacteria is <strong>\(10^{-13} N\)</strong> by solving the equations.</p>
                            <tbody>
+
            <div class="divider"></div>
                                <tr>
+
 
                                    <td>gray cast iron</td>
+
 
                                    <td>118~126</td>
+
            <h4 id="film-deformation-modeling">Film Deformation Modeling</h4>
                                </tr>
+
            <p><strong>Additional Pressure Produced by Bacteria</strong></p>
                                <tr>
+
            <p>Now let's see how to calculate additional pressure caused by bacteria.</p>
                                    <td>carbon steel</td>
+
            <p>To prepare different size of film, we prepare two clips to match film, </p>
                                    <td>206</td>
+
            <p>This is the schematic program of special film I, used for circle film.</p>
                                </tr>
+
            <p><img src="https://static.igem.org/mediawiki/2015/5/5f/QQ%E6%88%AA%E5%9B%BE20150916223725.png" alt="图片名称"></p>
                                <tr>
+
            <p>and this is film II for square film.</p>
                                    <td>roll copper</td>
+
            <p><img src="https://static.igem.org/mediawiki/2015/2/2a/QQ%E6%88%AA%E5%9B%BE20150916223708.png" alt="图片名称"></p>
                                    <td>108</td>
+
            <p><strong><em>Film I</em></strong></p>
                                </tr>
+
            <p>Firstly, let's check the geometric size of our special film I. The film is shown in green edge and the clip that used to fix the film presents in black edge. The film I is a circle with the <strong>radius(r)</strong> of <strong>2cm</strong>. The <strong>thickness(d)</strong> of film is <strong>0.1mm</strong>.</p>
                                <tr>
+
            <p><img src="https://static.igem.org/mediawiki/2015/a/ad/20150822003.png" alt=""></p>
                                    <td>brass</td>
+
            <p>Assume the <strong>numerical density(σ)</strong> of bacteria is <strong>~10000/mm^2</strong>, which means a single bacteria occupying the area of approximately <strong>~100 \(\sim 100 \mu m^2\)</strong>.</p>
                                    <td>89~97</td>
+
            <p>Let's assume addition pressure: </p>
                                </tr>
+
            <p><strong>\(\Delta P= \frac{\sum F}{S}=\sigma F_{0}\)</strong></p>
                                <tr>
+
            <p>Calculating with these data, we concluded additional pressure <strong>ΔP</strong> is <strong>~0.001Pa</strong>.</p>
                                    <td>roll aluminium</td>
+
            <p>The wavelength of laser we used is <strong>650nm</strong>. Thus deformation is recommended at ~um level.</p>
                                    <td>68</td>
+
            <p><strong>Stress Analysis</strong></p>
                                </tr>
+
            <p>This is the schematic diagram of of deformed film. Assume the radius of film is r, deformation range equals h.</p>
                                <tr>
+
            <p><img src="https://static.igem.org/mediawiki/2015/c/c0/20150831001.png" alt=""></p>
                                    <td>roll zinc</td>
+
            <p>The film is subject to several forces acting, including force f given by bacteria and tensile force F through the film.</p>
                                    <td>82</td>
+
            <p><img src="https://static.igem.org/mediawiki/2015/e/ed/20150822006.png" alt=""></p>
                                </tr>
+
            <p>Let's get some approximation on this model. As the deformation range(h) is much more smaller than the radius(r) of the film(h<<r), so we can get equations through stress analysis and geometry constraint:</p>
                                <tr>
+
            <p>\(f=F\times \frac{h}{r}\)<p>
                                    <td>lead</td>
+
            <p>\(\frac{F}{2\pi rd}=\frac{\Delta r}{r}\times G\)<p>
                                    <td>16</td>
+
            <p>\(\Delta r=\frac{1}{2}\times r\times (\frac{h}{r})^{2}\)<p>
                                </tr>
+
            <p>where f is the resultant force of the bacteria, F is the tensile force in the film, h is the deformation distance, r is the radius of the film,Δr is the variation of the radius, which is r, d is the thickness of the film, G is the Young Modulus. Solving these equations, we are able to get Young Modulus, a critical physical parameters to depicting the characteristic of film candidates.</p>
                                <tr>
+
            <p><strong><em>Film II</em></strong></p>
                                    <td>rubber</td>
+
            <p>Similarly, we are able to calculate the characteristic of film.</p>
                                    <td>0.00008</td>
+
            <p>The schematic program of film goes like this,</p>
                                </tr>
+
            <p><img src="https://static.igem.org/mediawiki/2015/8/8d/Ustc-film.png" alt="图片名称"></p>
                                <tr>
+
            <p>The film is shown in black edge and the clip that used to fix the film presents in green edge. The film II is a square with the parameter of film is 2.8cmX2.5cm. The <strong>thickness(d)</strong> of film is <strong>0.16mm</strong>.</p>
                                    <td>polyamides</td>
+
            <p>The equations after stress analysis are,</p>
                                    <td>0.011</td>
+
            <p>\(f=2F\times \frac{h}{b}\)</p>
                                </tr>
+
            <p>\(\frac{F}{a c}=\frac{\Delta b}{b}\times G\)</p>
                                <tr>
+
            <p>\(\Delta b=\frac{1}{2}\times b\times (\frac{h}{b})^{2}\)</p>
                                    <td>high pressure polyethylene</td>
+
            <p>Then, we are able to get Young Modulus, a critical physical parameters to depicting the characteristic of film candidates.</p>
                                    <td>0.015~0.025</td>
+
            <p><strong>Film Candidates</strong></p>
                                </tr>
+
            <p>Assume that 1% of bacteria are push ahead statistically, then the additional pressure given by bacteria is <strong>ΔP=0.01xσF0</strong>. After solving these equations above, we ultimately get the Young modulus of material required <strong>G &lt;1GPa</strong> in order to get ~um order deformation.</p>
                                <tr>
+
            <p>There are some common material's Young modulus,</p>
                                    <td>low pressure polyethylene</td>
+
            <table>
                                    <td>0.49~0.78</td>
+
              <thead>
                                </tr>
+
                <tr>
                                <tr>
+
                  <th>Material type</th>
                                    <td>polypropylene</td>
+
                  <th>Young modulus(GPa)</th>
                                    <td>1.32~1.42</td>
+
                </tr>
                                </tr>
+
              </thead>
                            </tbody>
+
              <tbody>
                        </table>
+
                <tr>
                        <p>We choose <strong>low pressure polyethylene</strong> as our material of the film.</p>
+
                  <td>Gray cast iron</td>
                        <p>Just think about it, if every bacteria pull together, we can detect the deformation even the film is made of steel.</p>
+
                  <td>118~126</td>
                    </div>
+
                </tr>
                </div>
+
                <tr>
                <div class="col hide-on-small-only m3">
+
                  <td>Carbon steel</td>
                    <div class="toc-wrapper pinned">
+
                  <td>206</td>
                        <ul class="section table-of-contents">
+
                </tr>
                            <li>
+
                <tr>
                                <a href="#force-of-single-bacteria">Force of single bacteria</a>
+
                  <td>Roll copper</td>
                            </li>
+
                  <td>108</td>
                            <li>
+
                </tr>
                                <a href="#modeling-of-deformation">Modeling of deformation</a>
+
                <tr>
                            </li>
+
                  <td>Brass</td>
                            <li>
+
                  <td>89~97</td>
                                <a href="#material-requests">Material requests</a>
+
                </tr>
                            </li>
+
                <tr>
                        </ul>
+
                  <td>Roll aluminium</td>
                    </div>
+
                  <td>68</td>
                </div>
+
                </tr>
            </div>
+
                <tr>
 +
                  <td>Roll zinc</td>
 +
                  <td>82</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>Lead</td>
 +
                  <td>16</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>Rubber</td>
 +
                  <td>0.00008</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>Polyamides</td>
 +
                  <td>0.011</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>High pressure polyethylene</td>
 +
                  <td>0.015~0.025</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>Low pressure polyethylene</td>
 +
                  <td>0.49~0.78</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>Polypropylene</td>
 +
                  <td>1.32~1.42</td>
 +
                </tr>
 +
                <tr>
 +
                  <td>Glass</td>
 +
                  <td>50</td>
 +
                </tr>
 +
              </tbody>
 +
            </table>
 +
            <p>Therefore, we selected several materials as possible films: low pressure polyethylene, rubbers, and glass as our material of the film.</p>
 +
            <p>See our results on film candidates at <a href="http://tower.im">Results-Film Candidate</a></p>
 +
            <p>Just think about it, if every bacteria pull together, we can detect the deformation even the film is made of steel and even bigger than steel.</p>
 +
          </div>
 
         </div>
 
         </div>
 +
        <div class="col hide-on-small-only m3">
 +
          <div class="toc-wrapper pinned">
 +
            <ul class="section table-of-contents">
 +
              <li>
 +
                <a href="#Film-Candidates-overview">Overview</a>
 +
              </li>
 +
              <li>
 +
                <a href="#force-of-single-bacterium">Force of Single Bacterium</a>
 +
              </li>
 +
              <li>
 +
                <a href="#film-deformation-modeling">Film Deformation Modeling</a>
 +
              </li>
 +
            </ul>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </div>
  
 +
    <div id="Adhesion-Dynamics" class="row">
 +
      <div class="card hoverable">
 +
        <div class="col s12 m9">
 +
          <div class="card-content">
 +
            <h4 id="Adhesion-Dynamics-overview" class="scrollspy">Overview</h4>
 +
            <p>This part introduces the data of adhesion experiment, makes exploration and interpretation on bacteria adhesion dynamics. Through the modeling of bacteria adhesion, we can get some characteristics important but difficult to directly measure on bacteria adhesion and reaction to antibiotics. Also give some irreplaceable constructive opinions and key indicators on the operation of detecting the concentration of antibiotics.</p>
 +
            <div class="divider"></div>
 +
           
  
        <div id="Adhesion-Dynamics" class="row">
+
            <h4 id="bacterial-absorption-simulation" class="scrollspy">Bacterial Absorption Simulation</h4>
            <div class="card hoverable">
+
            <p>Let's assume variables firstly, </p>
                <div class="col s12 m9">
+
            <p><strong>[C]</strong>: Concentration of bacteria.(/m^3)</p>
                    <div class="card-content">
+
            <p><strong>S</strong>: Area of film.(m^2)</p>
                        <p>This part analyse the data of adhesion experiment, make exploration and interpretation on bacteria adhesion dynamics. Through the modeling of bacteria adhesion, we can get some characteristics important but difficult to directly measure on bacteria adhesion and reaction to antibiotics. And give some irreplaceable constructive opinions and key indicators on the operation of detecting the concentration of antibiotics.</p>
+
            <p><strong>V</strong>: Average swiming speed of bacteria.(m/s)</p>
                        <h3 id="modeling" class="scrollspy">Modeling</h3>
+
            <p><strong>Vz</strong>: Average swiming speed component in the z axis, which is perpendicular to S.(m/s)</p>
                        <p><strong>Variable List</strong>
+
            <p><strong>σ</strong>: Density of the adhesive bacteria.(/m^2)</p>
                            <br><strong>[C]</strong>: Concentration of bacteria.(\(m^{3}\))
+
            <p><strong>N</strong>: Total number of sticked bacteria.</p>
                            <br><strong>S</strong>: Area of the place we consider.(\(m^{2}\))
+
            <p><strong>m</strong>: Movement percentage of bacteria.(%)</p>
                            <br><strong>V</strong>: Average swiming speed of bacteria.(m/s)
+
            <p><strong>M</strong>: Exact movement number of bacteria.</p>
                            <br><strong>Vz</strong>: Average swiming speed component in the z axis(perpendicular to S).(m/s)
+
            <p><strong>Bacterial Absorption Dynamics Fits Langmuir Equation</strong></p>
                            <br><strong>σ</strong>: Density of the cohered bacteria.(\(m^{2}\))
+
            <p>Assuming velocity of bacteria in any direction is the same, let's set it <strong>V</strong>,</p>
                            <br><strong>N</strong>: Total number of sticked bacteria.
+
            <p><img src="https://static.igem.org/mediawiki/2015/1/17/008.png" alt="Figure1:Moving speed of bacteria"></p>
                            <br><strong>m</strong>: Movement percentage.(%)
+
            <p>and irrespective of contacting with each other when swimming, we are able to conclude bacterial movement is free.</p>
                            <br><strong>M</strong>: Movement number of bacteria.</p>
+
            <p>Then we calculate the average velocity in z axis, </p>
                        <p><strong>Adhesion modeling</strong></p>
+
            <p>\(V_{z}=\int_{0}^{\frac{\pi }{2}}V\times cos\theta \times \frac{dS}{S}=\int_{0}^{\frac{\pi }{2}}\frac{V}{2}cos\theta sin\theta d\theta =\frac{V}{4}\)</p>
                        <p>Assuming that the velocity of bacteria in any direction is the same (<strong>V</strong>).</p>
+
            <p>Consider during the interval <strong>dt</strong>, in area <strong>dS</strong>, there are <strong>dN</strong> bacteria in tiny volume <strong>dS*Vzdt</strong> hitting the wall whose area is <strong>S</strong>. Schematic image illustrates the process mentioned above,</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/1/17/008.png" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/d/d2/009.png" alt="Figure2:Interaction between bacteria and film"></p>
                        <p>And we believe that the bacteria has very less contact with each other when they swim, so we could consider their movement is free.</p>
+
            <p>Consequently we can know that</p>
                        <p>Then we can get the average velocity in z axis</p>
+
            <p>\(dN=C\times dS\times V_{z} dt\)</p>
                        <p>\(V_{z}=\int_{0}^{\frac{\pi }{2}}V\times cos\theta \times \frac{dS}{S}=\int_{0}^{\frac{\pi }{2}}\frac{V}{2}cos\theta sin\theta d\theta =\frac{V}{4}\)</p>
+
            <p>Because the number of bacteria in solution is much more larger than it on the glass surface whose area is <strong>S</strong>. So the concentration of bacteria (<strong>C</strong>) can be regarded as steady during the measurement period.</p>
                        <p>Consider in during the interval '<strong>dt</strong>', in area '<strong>dS</strong>', those bacteria in tiny volume \('dS\times V_{z}dt'\)(with the amount '<strong>dN</strong>' ) will hit the wall(<strong>S</strong>).</p>
+
            <p>Assuming the number of hitting wall bacteria is stable, the surface can only adhere one layer of bacteria, that is the place which has already adhered bacteria can not stick any more bacteria. This means we could use Langmuir Adsorption Isotherm to solve this problem!</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/d/d2/009.png" alt=""></p>
+
            <p>Let's see how we figure out this issue using Langmuir Equation. Consider in a current area <strong>S</strong>, the density of bacteria on surface is <strong>σ</strong>, and during a interval <strong>dt</strong>, the change of bacteria density is <strong>dσ</strong></p>
                        <p>So we can know that</p>
+
            <p>\(Sd\sigma =K_{a}\times (1-\frac{\sigma }{\sigma _{0}})\times dN-K_{d}\times S\sigma dt\)<p>
                        <p>\(dN=C\times dS\times V_{z} dt\)</p>
+
            <p>Where <strong>Ka</strong> is the adhesive rate of each hit, <strong>Kd</strong> is the drop rate of the adhered bacteria.</p>
                        <p>Because the amount of bacteria in solution is much more lager than it on the glass surface(<strong>S</strong>). So the concentration of bacteria (<strong>C</strong>) remains unchanged during the whole time.</p>
+
            <p>Then, after solving this Ordinary Differentiate Equation, ODE, we got the equation shown below,</p>
                        <p>So the hit-wall-bacteria number is stable, but the surface can only adhere one layer of bacteria, and the area that already adhere bacteria can not stick more bacteria. That means we could use Langmuir adsorption isotherm to solve this problem!</p>
+
            <p>\sigma (t)=\frac{K_{a}CV_{z}\sigma _{0}}{KCV_{z}+K_{a}\sigma _{0}}\times (1-e^{-\frac{K_{a}CV_{z}+K_{d}\sigma _{0}}{\sigma _{0}}\times t})</p>
                        <p>Consider a current area ('<strong>S</strong>'), the density of bacteria on surface is '<strong>σ</strong>', and during the interval '<strong>dt</strong>', the change of σ is '<strong>dσ</strong>'.</p>
+
            <p>According to this result, the density of bacteria at time t is related to adhesive rate of bacteria <strong>Ka</strong>, concentration of bacteria <strong>c</strong> and velocity of bacteria <strong>Vz</strong>. And we can let <strong>(KaCVz/(Kd*σ0+KaCVz))</strong> equals an integrative constant, <strong>K</strong>. In addition, we cannot start recording the image data the moment we put the bacteria on the cover glass in reality, so there should be a time delay in our modeling. Thus we got the accurate equation depicting the density of bacteria time t as,</p>
                        <p>Then</p>
+
            <p>\(\sigma (t)=K\sigma _{0}\times (1-e^{-\frac{K_{a}CV_{z}}{K\sigma _{0}}\times (t-t_{0})})\)<p>
                        <p>\(Sd\sigma =K_{a}\times (1-\frac{\sigma }{\sigma _{0}})\times dN-K_{d}\times S\sigma dt\)<p>
+
            <p>In order to fit the data conveniently, we change the equation form into a more general one,</p>
                        <p>'<strong>Ka</strong>' is the success adhere rate of each hit, '<strong>Kd</strong>' is the drop rate of the adhered bacteria.</p>
+
            <p>\(\sigma (t)=ae^{-bt}+c\)<p>
                        <p>Solve this ODEs and get the equation shows below</p>
+
            <p><strong>Bacteria Density Simulation</strong></p>
                        <p>\(\sigma (t)=\frac{K_{a}CV_{z}\sigma _{0}}{KCV_{z}+K_{a}\sigma _{0}}\times (1-e^{-\frac{K_{a}CV_{z}+K_{d}\sigma _{0}}{\sigma _{0}\times t}})\)</p>
+
            <p>With assuming a constant value group:</p>
                        <p>In fact we can't start to record the image data as soon as we put the bacteria on the cover glass, so there is a time delay in the real situation equation. And make '\(\frac{K_{a}CV_{z}}{K_{d}\sigma _{0}+K^{a}CV_{z}}\)'.That means</p>
+
            <table>
                        <p>\(\sigma (t)=K\sigma _{0}\times (1-e^{-\frac{K_{a}CV_{z}}{K\sigma _{0}}\times (t-t_{0})})\)<p>
+
              <thead>
                        <p>In order to fitting the data conveniently, we change the equation form into a more general one:</p>
+
                <tr>
                        <p>\(\sigma (t)=ae^{-bt}+c\)<p>
+
                  <th>Ka</th>
                        <p><strong>Simulation</strong></p>
+
                  <th>Kd</th>
                        <p>And we could show some simulation results.</p>
+
                  <th>C</th>
                        <p>With the constant value:</p>
+
                  <th>Vz</th>
                        <table>
+
                  <th>σ0</th>
                            <thead>
+
                </tr>
                                <tr>
+
              </thead>
                                    <th>\(K_{a}\)</th>
+
              <tbody>
                                    <th>\(K_{d}\)</th>
+
                <tr>
                                    <th>C</th>
+
                  <td>0.5</td>
                                    <th>\(V_{z}\)</th>
+
                  <td>0.01</td>
                                    <th>\(\sigma _{0}\)</th>
+
                  <td>10^9/m^3</td>
                                </tr>
+
                  <td>5um/s</td>
                            </thead>
+
                  <td>10^10/m^2</td>
                            <tbody>
+
                </tr>
                                <tr>
+
              </tbody>
                                    <td>0.5</td>
+
            </table>
                                    <td>0.01</td>
+
            <p>we got the plot expressing the bacteria density variate through time, </p>
                                    <td>10^9/m^3</td>
+
            <p><img src="https://static.igem.org/mediawiki/2015/9/99/20150901024.png" alt="Figure3:Bacteria Density-Time simulation result"></p>
                                    <td>5um/s</td>
+
            <p>which is quite similar to the real data.</p>
                                    <td>10^10/m^2</td>
+
            <p><strong>Bacteria Counting Program</strong></p>
                                </tr>
+
            <p>This program is used to calculate the amount of bacteria and get the percentage of moving bacteria, which is essential for our further research. More details on our coding using Matlab please refer to <a href="https://github.com/Cintau/2015USTCiGEM/">2015 USTC in Github</a>.</p>
                            </tbody>
+
            <p>The principle of programming is told below:</p>
                        </table>
+
            <ol>
                        <p><img src="https://static.igem.org/mediawiki/2015/9/99/20150901024.png" alt=""></p>
+
              <li>Loading the image.</li>
                        <p>That's very similar to the real data.</p>
+
              <li>Calculate a self-adapting or special threshold value in the image binay progress.</li>
                        <div class="divider"></div>
+
              <li>Use mathematical morphology operations.</li>
 +
              <li>Use filtering processing make the image more smooth.</li>
 +
              <li>Delete the small area to reduce the error noises.</li>
 +
              <li>Auto-counting the number of objects.</li>
 +
            </ol>
 +
            <p>Now we are able to count bacteria using this program, see what we got!</p>
 +
            <p><strong>Adhesive Assay Analysis-Bacteria Number</strong></p>
 +
            <p>Now we got the theoretical bacteria density variation formula and an efficient program to demonstrate the real number of bacteria on film. We are trying to explain everything we gained from our experiment. Results are posted in <a href="http://tower.im">Results-Adhesion assay</a>.</p>
 +
            <p>Using MATLAB® to simulate these data with the function '<strong>f(x)=a exp(-b*x)+c</strong>', here is our analysis,</p>
 +
            <p><strong><em>HCB1-PLL(+)-no antibiotics number-time</em></strong></p>
 +
            <p>Fitting result are shown below</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/8/86/20150903028.png" alt="Figure4:HCB1-PLL(+)-no antibiotics number-time fitting result"></p>
 +
            <p>the constants value and details are,</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/6/66/20150903029.png" alt="Figure5:HCB1-PLL(+)-no antibiotics number-time fitting details"></p>
 +
            <p><strong><em>HCB1-PLL(+)-0.1ug/ml Cl number-time</em></strong></p>
 +
            <p>Fitting result:</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/4/46/20150906038.png" alt="Figure6:HCB1-PLL(+)-0.1ug/ml Cl number-time fitting result"></p>
 +
            <p>Constant value and details:</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/c/c0/20150906039.jpg" alt="Figure7:HCB1-PLL(+)-0.1ug/ml Cl number-time fitting details"></p>
 +
            <p><strong><em>HCB1-PLL(+)-0.5ug/ml Cl number-time</em></strong></p>
 +
            <p>Fitting result:</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/1/1e/20150906040.png" alt="Figure8:HCB1-PLL(+)-0.5ug/ml Cl number-time fitting result"></p>
 +
            <p>Constant value and details:</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/0/09/20150906041.jpg" alt="Figure9:HCB1-PLL(+)-0.5ug/ml Cl number-time fitting details"></p>
 +
            <p><strong><em>HCB1-PLL(+)-1ug/ml Cl number-time</em></strong></p>
 +
            <p>Fitting result,</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/b/ba/20150906042.png" alt="Figure10:HCB1-PLL(+)-1ug/ml Cl number-time fitting result"></p>
 +
            <p>Constant value in detail,</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/c/c8/20150906043.jpg" alt="Figure11:HCB1-PLL(+)-1ug/ml Cl number-time fitting details"></p>
 +
            <p><strong><em>PAO1-PLL(+)-no antibiotics number-time</em></strong></p>
 +
            <p>Fitting plot is </p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/1/17/20150903030.jpg" alt="Figure12:PAO1-PLL(+)-no antibiotics number-time fitting result"></p>
 +
            <p>Constants value and details,</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/f/fb/20150903031.jpg" alt="Figure13:PAO1-PLL(+)-no antibiotics number-time fitting details"></p>
 +
            <p><strong><em>PAO1-PLL(-)-no antibiotics number-time</em></strong></p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/8/82/20150903032.jpg" alt="Figure14:PAO1-PLL(-)-no antibiotics number-time fitting result"></p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/8/89/20150903033.jpg" alt="Figure15:PAO1-PLL(-)-no antibiotics number-time fitting details"></p>
 +
            <p>All these perfect fitting results illustrate that our hypothesis of adhesion mechanism is totally correct. All Modelings and image analysis programs hit the truth.</p>
 +
            <p><strong>Adhesive Assay Analysis-Movement Percentage</strong></p>
 +
            <p>Now we know that bacteria can move straight because of its flagellum rotating counterclockwise according to previous research. However, due to the stickiness of PLL, some flagella may stick to film when spinning. Assuming the rate of stick (P) is constant, the movement percentage of bacteria will present in an exponential form changing through time.</p>
 +
            <p>Assume the function of <strong>movement percentage ( M)</strong> related to time is,</p>
 +
            <p>m=m0<em>exp(-k</em>t)</p>
 +
            <p><em>Note</em>: the data is fixed by the previous analysis result <strong>t0</strong>.</p>
 +
            <p><strong><em>PAO1-PLL-no antibiotics</em></strong></p>
 +
            <p>Fitting plot</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/4/46/20150907046.png" alt="Figure16:PAO1-PLL-no antibiotics movement percentage-time fitting result"></p>
 +
            <p>Constant value and details</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/6/62/20150907047.jpg" alt="Figure17:PAO1-PLL-no antibiotics movement percentage-time fitting details"></p>
 +
            <p>We can see that the raw data perfectly match to this model.</p>
 +
            <p><strong>Important Parameters in Adhesion Equation</strong></p>
 +
            <p>According to the fitting results shown above and equations, we could get some useful information when operating NDM, such as,</p>
 +
            <ul>
 +
              <li>Initiation Moment (t0) </li>
 +
              <li>Adhesion Ability</li>
 +
            </ul>
 +
            <p><strong><em>Initiation Moment(t0)</em></strong></p>
 +
            <p>Because we can not start recording the image data the moment we put the bacteria solution on the cover glass, so there is a starting time delay in the equation. According to our model, we are able to retrospect the exact the moment when we conduct experiment,</p>
 +
            <p>\(\because a=-c\times e^{-bt_{0}} \therefore t_{0}=\frac{ln(-\frac{a}{c})}{-b}\)</p>
 +
            <p>Substituting this function into fitting result, we can get the real starting time of each test. Results are delivered below:</p>
 +
            <table>
 +
              <thead>
 +
                <tr>
 +
                  <th>Conditions</th>
 +
                  <th>PAO1-PLL(-)-0</th>
 +
                  <th>PAO1-PLL(+)-0</th>
 +
                  <th>HCB1-PLL(+)-0</th>
 +
                  <th>HCB1-PLL(+)-0.1</th>
 +
                  <th>HCB1-PLL(+)-0.5</th>
 +
                  <th>HCB1-PLL(+)-1</th>
 +
                </tr>
 +
              </thead>
 +
              <tbody>
 +
                <tr>
 +
                  <td>t0</td>
 +
                  <td>60.3s</td>
 +
                  <td>33.3s</td>
 +
                  <td>24.4s</td>
 +
                  <td>109.2s</td>
 +
                  <td>39.5s</td>
 +
                  <td>60.3s</td>
 +
                </tr>
 +
              </tbody>
 +
            </table>
 +
            <p>It is interesting that we could know the "Initiation moment" through our data analysis, which is very cool.</p>
 +
            <p><strong><em>Adhesion Ability</em></strong></p>
 +
            <p>Another intriguing and important property we got through our data analysis is the <strong>adhesion ability(Bacteria to Cover Glass)</strong>(AA-B-CS in brief).</p>
 +
            <p>According to the fitting results and modeling equation, the derivative of the fitting function at the beginning(t0) is the bacteria number growth rate in its maximum. So we defined this derivative value as the adhesion ability of the bacteria solution to cover glass, or call it <strong>AA-B-CS</strong> for short.</p>
 +
            <p>Refering to the modeling result, we know that:</p>
 +
            <p>AA-B-CS=dσ/dt|(t=0)=KaCVz=c*b</p>
 +
            <p>where, c and b are the constant value in fitting result.</p>
 +
            <p>This equation told us AA-B-CS relates to Ka, the adhesion rate of bacteria on every hit, C, the concentration of bacteria solution, Vz, the average swim speed of the bacteria. This explains why we emphasize both bacteria and film material when we defined this parameter.</p>
 +
            <p>The AA-B-CS of HCB1 shown in table,</p>
 +
            <table>
 +
              <thead>
 +
                <tr>
 +
                  <th>Conditions</th>
 +
                  <th>HCB1-PLL(+)-0</th>
 +
                  <th>HCB1-PLL(+)-0.1</th>
 +
                  <th>HCB1-PLL(+)-0.5</th>
 +
                  <th>HCB1-PLL(+)-1</th>
 +
                </tr>
 +
              </thead>
 +
              <tbody>
 +
                <tr>
 +
                  <td>AA-B-CS</td>
 +
                  <td>2.01</td>
 +
                  <td>6.69</td>
 +
                  <td>12.64</td>
 +
                  <td>8.23</td>
 +
                </tr>
 +
              </tbody>
 +
            </table>
 +
            <p><em>Note</em>: The bacteria solution in 'HCB1-PLL(+)-0' sample was not the same with other samples, so the AA-B-CS value is much different with other's.</p>
 +
            <p>Surprisingly, we found that <strong>the concentration of antibiotics doesn't effect the AA-B-CS in our assay</strong>, which suggests that we are able to use the same type of bacteria treated with antibiotic in different concentrations, which is another important theoretical base of our NDM.</p>
 +
            <div class="divider"></div>
  
                        <h3 id="image-recognition-program" class="scrollspy">Image recognition program</h3>
 
                        <p>More details on our coding using Matlab please refer to <a href="https://github.com/Cintau/2015USTCiGEM/">2015 USTC in Github</a>.</p>
 
                        <p><strong>Programming method:</strong>
 
                        <br>1.Loading the image.
 
                        <br>2.Calculate a self-adapting or special threshold value in the image binay progress.
 
                        <br>3.Use mathematical morphology operations.
 
                        <br>4.Use filtering processing make the image more smooth.
 
                        <br>5.Delete the small area to reduce the error noises.
 
                        <br>6.Auto-counting the number of objects.</p>
 
                        <div class="divider"></div>
 
  
                        <h3 id="results-analysis" class="scrollspy">Results analysis</h3>
 
                        <h5 id="fitting-result">Fitting result</h5>
 
                        <p>Reference the experiment data.</p>
 
                        <p>Use MATLAB simulate these data with the function '\(f(x)=a^{-b\times x}+c\)'.</p>
 
                        <p><strong>HCB1-PLL(+)-no antibiotics number-time</strong></p>
 
                        <p>Fitting result:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/8/86/20150903028.png" alt=""></p>
 
                        <p>Constants value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/6/66/20150903029.png" alt=""></p>
 
                        <p><strong>HCB1-PLL(+)-0.1ug/ml Cl number-time</strong></p>
 
                        <p>Fitting result:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/4/46/20150906038.png" alt=""></p>
 
                        <p>Constant value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c0/20150906039.jpg" alt=""></p>
 
                        <p><strong>HCB1-PLL(+)-0.5ug/ml Cl number-time</strong></p>
 
                        <p>Fitting result:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/1/1e/20150906040.png" alt=""></p>
 
                        <p>Constant value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/0/09/20150906041.jpg" alt=""></p>
 
                        <p><strong>HCB1-PLL(+)-1ug/ml Cl number-time</strong></p>
 
                        <p>Fitting result:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/b/ba/20150906042.png" alt=""></p>
 
                        <p>Constant value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c8/20150906043.jpg" alt=""></p>
 
                        <p><strong>PAO1-PLL(+)-no antibiotics number-time</strong></p>
 
                        <p>Fitting result:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/1/17/20150903030.jpg" alt="">
 
                        <p>Constants value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/f/fb/20150903031.jpg" alt=""></p>
 
                        <p><strong>PAO1-PLL(-)-no antibiotics number-time</strong></p>
 
                        <p>Fitting result:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/8/82/20150903032.jpg" alt=""></p>
 
                        <p>Constants value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/8/89/20150903033.jpg" alt=""></p>
 
                        <p>All these perfect fitting result shows that our hypothesis of adhesion mechanism, modeling and image analysis program is just fit the truth.</p>
 
                        <h5 id="movement-percentage">Movement percentage</h5>
 
                        <p>We know that bacteria can move straight because its flagellum can contrarotate. But due to the stickiness of PLL, some flagellum may be sticked when they spin. Assuming that the rate of stick (P) always the same all the time. So the the movement percentage will present a exponential form.</p>
 
                        <p>Assume the function of <strong>movement percentage (M)</strong> to time is:</p>
 
                        <p>\(m=m_{0}^{-kt}\)</p>
 
                        <p>Fitting function: \(M=a^{-bt}\)</p>
 
                        <p>PS: the data was fixed by the previous analysis result <strong>\(t_{0}\)</strong>.</p>
 
                        <p><strong>PAO1-PLL-0</strong></p>
 
                        <p>Fitting result</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/4/46/20150907046.png" alt=""></p>
 
                        <p>Constant value and details:</p>
 
                        <p><img src="https://static.igem.org/mediawiki/2015/6/62/20150907047.jpg" alt=""></p>
 
                        <p>We can see that the raw data is match to this model.</p>
 
                        <h5 id="result-analysis">Result analysis</h5>
 
                        <p>According to the Fitting result and fitting equation, we could get some useful information such as "<strong>Adhesion ability</strong>", "<strong>Starting time (\(t_{0}\))</strong>"</p>
 
                        <p><strong>Starting time (\(t_{0}\))</strong></p>
 
                        <p>Because we can not start record the image data as soon as we drop the bacteria solution on the cover glass, so there is a starting time in the equation. According our model, we know that:</p>
 
                        <p>\(\because a=-c\times e^{-bt_{0}} \therefore t_{0}=\frac{ln(-\frac{a}{c})}{-b}\)</p>
 
                        <p>Substitution this function into fitting result, we can get the starting time of each test. Results shows below:</p>
 
                        <table>
 
                            <thead>
 
                                <tr>
 
                                    <th></th>
 
                                    <th>PAO1-PLL(-)-0</th>
 
                                    <th>PAO1-PLL(+)-0</th>
 
                                    <th>HCB1-PLL(+)-0</th>
 
                                    <th>HCB1-PLL(+)-0.1</th>
 
                                    <th>HCB1-PLL(+)-0.5</th>
 
                                    <th>HCB1-PLL(+)-1</th>
 
                                </tr>
 
                            </thead>
 
                            <tbody>
 
                                <tr>
 
                                    <td>t0</td>
 
                                    <td>60.3s</td>
 
                                    <td>33.3s</td>
 
                                    <td>24.4s</td>
 
                                    <td>109.2s</td>
 
                                    <td>39.5s</td>
 
                                    <td>60.3s</td>
 
                                </tr>
 
                            </tbody>
 
                        </table>
 
                        <p>It is interesting that we could know the "starting time" through our data analysis, that's a big deal.</p>
 
                        <p><strong>Adhesion ability</strong></p>
 
                        <p>Another interesting and important properties we can get through our data analysis is the <strong>adhesion ability</strong> of the bacteria solution to cover glass. I'll explain why I called it "the adhesion ability of the bacteria solution to cover glass" later.</p>
 
                        <p>According to the fitting results and modeling equation, the derivative of the fitting function at the time point zero is the maximum bacteria number growth rate. So I define this derivative value as the adhesion ability of the bacteria solution to cover glass, or call it "AA" for short.</p>
 
                        <p>Refer to the modeling result, we know that:</p>
 
                        <p>\(AA=\frac{d\sigma }{dt}\mid _{t=0}=K_{a}CV_{z}=c\times b\)</p>
 
                        <p>c&amp;b is the constant value in fitting result.</p>
 
                        <p>The AA relates to \(K_{a}\), the adhesion rate of bacteria on every hit, C, the concentration of bacteria solution,\(V_{z}\) , the average swim speed of the bacteria. So that is why I call it the adhesion ability of bacteria solution to cover glass.</p>
 
                        <p>The AA of HCB1 shown in table:</p>
 
                        <table>
 
                            <thead>
 
                                <tr>
 
                                    <th>condition</th>
 
                                    <th>HCB1-PLL(+)-0</th>
 
                                    <th>HCB1-PLL(+)-0.1</th>
 
                                    <th>HCB1-PLL(+)-0.5</th>
 
                                    <th>HCB1-PLL(+)-1</th>
 
                                </tr>
 
                            </thead>
 
                            <tbody>
 
                                <tr>
 
                                    <td>AA</td>
 
                                    <td>2.01</td>
 
                                    <td>6.69</td>
 
                                    <td>12.64</td>
 
                                    <td>8.23</td>
 
                                </tr>
 
                            </tbody>
 
                        </table>
 
                        <p>PS: The bacteria solution in 'HCB1-PLL(+)-0' sample was not the same with other samples, so the AA value is much different with other's.</p>
 
                        <p>We can know that the concentration of antibiotics doesn't effect on AA, so we could use the same type of bacteria in different antibiotics solution.</p>
 
  
                        <h3 id="experiment-guidance" class="scrollspy">Experiment guidance</h3>
+
            <h4 id="experiment-guidance" class="scrollspy">Experiment Guidance</h4>
                        <p>In "antibiotics concentration detection experiment" we need to know <strong>film-coating time, bacteria-film interaction time(Ti), concentration of the bacteria solution, and observation time</strong>. All of these can be known through the pre-test result analysis.</p>
+
            <p>In Adhesion Assay we finally could know several important things, </p>
                        <p><strong>Film-coating time</strong></p>
+
            <ul>
                        <p>Through the pre-test and data in paper, we use 20ug/ml poly-L-lysine coating the film <strong>over 4 hours or overnight</strong> at the temperature <strong>4℃</strong> eventualy.</p>
+
              <li><strong>Film-coating time</strong></li>
                        <p><strong>Bacteria-film interaction time(Ti)</strong></p>
+
              <li><strong>Bacteria-film interaction time(Ti)</strong></li>
                        <p>Because the motility of bacteria will decrease when we not administrate antibiotics. So we need to balance the total number of bacteria and motility.</p>
+
              <li><strong>Concentration of the bacteria solution,</strong></li>
                        <p>Use test "PAO1-PLL-0" data as sample to analyse the best time of bacteria-film interactintime.</p>
+
              <li><strong>Observation Moment</strong> </li>
                        <p>The best interaction time is the time that the number of movement bacteria reach the maximum value.</p>
+
            </ul>
                        <p>\(M=S\sigma m\)</p>
+
            <p>All of these can be known through the pre-test results analysis.</p>
                        <p>\(M=c(1-e^{-bt})\times m_{0}e^{-kt}\)</p>
+
            <p><strong><em>Film-coating time</em></strong></p>
                        <p>We can give the simulation result:</p>
+
            <p>Through the pre-test and data in paper, we use 20ug/ml poly-L-lysine coating the film <strong>over 4 hours or overnight</strong> at the temperature <strong>4℃</strong> eventualy.</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/8/88/20150907052.png" alt=""></p>
+
            <p><strong><em>Bacteria-film interaction time(Ti)</em></strong></p>
                        <p>Thus we can recommend the <strong>Bacteria-film intraction time(Ti)~100s</strong>. That means since you inoculate the bacteria about 100s, you should put it into your water sample to test its antibiotics concentration.</p>
+
            <p>Because the motility of bacteria will decrease when we do not administrate antibiotics. So we need to balance the total number of bacteria and motility. If we implement the data from "PAO1-PLL-0" assay as sample to analyse the best time of bacteria-film interaction time. We got the best interaction time is the moment when the number of movement bacteria reach the maximum value.</p>
                        <p><strong>Observation time</strong></p>
+
            <p>The total movement bacteria is,</p>
                        <p>If we want to observe the deformation of the film, the bacteria's reaction must reach a stable stage. Assuming that K(%) of bacteria that not act at first start to act when we administrate antibiotics.</p>
+
            <p>\(M=S\sigma m\)</p>
                        <p>The movement percentage differential equation change to this:</p>
+
            <p>Getting S, σ and m in detail, we got,</p>
                        <p>\(\frac{dm}{dt}=(1-m)K-bm\)</p>
+
            <p>\(M=c(1-e^{-bt})\times m_{0}e^{-kt}\)</p>
                        <p>solve this differential equation get the m~t function:</p>
+
            <p>Now we can simulate those data!</p>
                        <p>\(m(t)=\frac{K+(m_{0}k-(1-m_{0})K)e^{-(K+k)t}}{K+k}\)</p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/8/88/20150907052.png" alt="Figure18:Movement percentage-Time in adhesion simulation figure"></p>
                        <p>Make \(m_{0}\)=0.5, choose different 'K' can get different simulate curve.(According to previous analysis, 'k'=0.0065.)</p>
+
            <p>Thus we highly recommend the <strong>Bacteria-film intraction time(Ti) is approximately 100s after treating with bacteria solution</strong>, which means since you inoculate the bacteria about 100s, you should put the film into your sample solution and determine its antibiotics concentration.</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/1/1e/20150908055.png" alt=""></p>
+
            <p><strong>Concentration of bacteria solution</strong></p>
                        <p>That's very similar to our raw data:</p>
+
            <p>In test "PAO1-PLL-0", the bacteria solution was culture <strong>overnight in 37℃</strong>(which means the bacteria was in platform stage). <strong>diluted bacteria solution 50 times.</strong></p>
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c3/Finalresult.png" alt=""></p>
+
            <p><strong><em>Observation Moment</em></strong></p>
                        <p>If we want to limit the error probility under 5%, we need the movement percentage reach over 95% of the maximum or minimun value. According to the simulation result, when 'm' reach 95% of its maximum or minimum value\(\frac{K}{K+k}\), t~100s.</p>
+
            <p>If we want to observe the deformation of the film, the bacterial additional pressure on film should reach a stable stage. Assume there are K% of inactivated bacteria move when administrating with antibiotics. Then the movement percentage differential equation will be changed to this:</p>
                        <p><strong>Concentration of bacteria solution</strong></p>
+
            <p>\(\frac{dm}{dt}=(1-m)K-bm\)</p>
                        <p>In test "PAO1-PLL-0", the bacteria solution was culture <strong>overnight in 37℃</strong>(which means the bacteria was in platform stage). And we <strong>diluted bacteria solution 50 times.</strong></p>
+
            <p>After solving this differential equation, we received a <em>m to t</em> function:</p>
                    </div>
+
            <p>\(m(t)=\frac{K+(m_{0}k-(1-m_{0})K)e^{-(K+k)t}}{K+k}\)</p>
                </div>
+
            <p>Let \(m_{0}\)=0.5, and choose different 'K'. We are able to acquire different simulating curve.(According to previous analysis, 'K'=0.0065.)</p>
                <div class="col hide-on-small-only m3">
+
            <p><img src="https://static.igem.org/mediawiki/2015/1/1e/20150908055.png" alt="Figure19:Movement percentage-Time when add antibiotics simulation figure"></p>
                    <div class="toc-wrapper pinned">
+
            <p>Very luckily, that's very similar to our experiment data,</p>
                        <ul class="section table-of-contents">
+
            <p><img src="https://static.igem.org/mediawiki/2015/c/c3/Finalresult.png" alt="Figure20:Movement percentage-Time when add antibiotics real data"></p>
                            <li>
+
            <p>If we want to limit the error probability less than 5%, we need the movement percentage reach over 95% of the maximum or minimun value. According to the simulation result, when 'm' reach 95% of its maximum or minimum value(K/(K+k)), t~100s.</p>
                                <a href="#modeling">Modeling</a>
+
            <p>Consequently, we recommend user to get the results in NDM, <strong>you should wait approximately 100s after putting film into optical path.</strong></p>
                            </li>
+
          </div>
                            <li>
+
                                <a href="#image-recognition-program">Image recognition program</a>
+
                            </li>
+
                            <li>
+
                                <a href="#results-analysis">Result analysis</a>
+
                            </li>
+
                            <li>
+
                                <a href="#experiment-guidance">Experiment guidance</a>
+
                            </li>
+
                        </ul>
+
                    </div>
+
                </div>
+
            </div>
+
 
         </div>
 
         </div>
 +
        <div class="col hide-on-small-only m3">
 +
          <div class="toc-wrapper pinned">
 +
            <ul class="section table-of-contents">
 +
              <li>
 +
                <a href="#Adhesion-Dynamics-overview">Overview</a>
 +
              </li>
 +
              <li>
 +
                <a href="#bacterial-absorption-simulation">Bacterial Absorption Simulation</a>
 +
              </li>
 +
              <li>
 +
                <a href="#experiment-guidance">Experiment Guidance</a>
 +
              </li>
 +
            </ul>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </div>
  
        <div id="Interference-Fringes-Analysis" class="row">
+
    <div id="Interference-Fringes-Analysis" class="row">
            <div class="card hoverable">
+
      <div class="card hoverable">
                <div class="col s12 m9">
+
        <div class="col s12 m9">
                    <div class="card-content">
+
          <div class="card-content">
                        <p>This part explain the fundamental principle of our detecting method -- interference. Develop a pre-experiment to verifiy the modeling in advance. Give a method to process the interference image and calculate the deformation of the film in a high precision.</p>
+
            <p>This part explain the fundamental principle of our detecting method -- interference. Develop a pre-experiment to verifiy the modeling in advance. Give a method to process the interference image and calculate the deformation of the film in a high precision.</p>
                        <h3 id="pre-experiment" class="scrollspy">Pre-experiment</h3>
+
            <h3 id="pre-experiment" class="scrollspy">Pre-experiment</h3>
                        <p>In the pre-experiment(<strong>method shown in annex</strong>), we use reflector and film get interference fringes and catch picture like this</p>
+
            <p>In the pre-experiment(<strong>method shown in annex</strong>), we use reflector and film get interference fringes and catch picture like this</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/9/98/20150823001.jpg" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/9/98/20150823001.jpg" alt=""></p>
                        <p>That's a typical newton's rings interference.</p>
+
            <p>That's a typical newton's rings interference.</p>
                        <div class="divider"></div>
+
            <div class="divider"></div>
   
+
 
                        <h3 id="modeling-method" class="scrollspy">Modeling method</h3>
+
            <h3 id="modeling-method" class="scrollspy">Modeling method</h3>
                        <p>Consider the deformation of film.</p>
+
            <p>Consider the deformation of film.</p>
                        <p>As the deformation range(h) is much more smaller than the radius(r) of the film (h&lt;&lt;r),</p>
+
            <p>As the deformation range(h) is much more smaller than the radius(r) of the film (h&lt;&lt;r),</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/c/c0/20150831001.png" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/c/c0/20150831001.png" alt=""></p>
                        <p>we can consider the light is approximate paraxial spherical.</p>
+
            <p>we can consider the light is approximate paraxial spherical.</p>
                        <p>The area of CCD camera is small(~cm x cm), so the interference is approximate paraxial spherical as well.</p>
+
            <p>The area of CCD camera is small(~cm x cm), so the interference is approximate paraxial spherical as well.</p>
                        <p>In perfect situation, light path sketch shown below.(Light shows in <strong>blue</strong> line is the reflected light from <strong>holophote</strong>, light shows in <strong>red</strong> is the reflected light from <strong>film</strong>.)</p>
+
            <p>In perfect situation, light path sketch shown below.(Light shows in <strong>blue</strong> line is the reflected light from <strong>holophote</strong>, light shows in <strong>red</strong> is the reflected light from <strong>film</strong>.)</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/f/f7/20150831002.png" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/f/f7/20150831002.png" alt=""></p>
                        <p>L is the distance form the virtual image to the CCD camera.</p>
+
            <p>L is the distance form the virtual image to the CCD camera.</p>
                        <p>Because the virtual image of holophote and the film can not set strict parallel in actual situation.</p>
+
            <p>Because the virtual image of holophote and the film can not set strict parallel in actual situation.</p>
                        <p>The light path sketch changes to this(Light shows in <strong>blue</strong> line is the reflected light from <strong>holophote</strong>, light shows in <strong>red</strong> is the reflected light from <strong>film</strong>.)</p>
+
            <p>The light path sketch changes to this(Light shows in <strong>blue</strong> line is the reflected light from <strong>holophote</strong>, light shows in <strong>red</strong> is the reflected light from <strong>film</strong>.)</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/1/18/02150831003.png" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/1/18/02150831003.png" alt=""></p>
                        <p>We could use the method of coordinate transformation to simplify them like that(Light shows in <strong>blue</strong> line is the reflected light from <strong>holophote</strong>, light shows in <strong>red</strong> is the reflected light from <strong>film</strong>.)</p>
+
            <p>We could use the method of coordinate transformation to simplify them like that(Light shows in <strong>blue</strong> line is the reflected light from <strong>holophote</strong>, light shows in <strong>red</strong> is the reflected light from <strong>film</strong>.)</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/a/a2/20150831004.png" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/a/a2/20150831004.png" alt=""></p>
                        <p>With the parameters shown in table</p>
+
            <p>With the parameters shown in table</p>
                        <table>
+
            <table>
                            <thead>
+
              <thead>
                                <tr>
+
                <tr>
                                    <th>r</th>
+
                  <th>r</th>
                                    <th>h</th>
+
                  <th>h</th>
                                    <th>a</th>
+
                  <th>a</th>
                                    <th>θ</th>
+
                  <th>θ</th>
                                </tr>
+
                </tr>
                            </thead>
+
              </thead>
                            <tbody>
+
              <tbody>
                                <tr>
+
                <tr>
                                    <td>0.02m</td>
+
                  <td>0.02m</td>
                                    <td>5e-6m</td>
+
                  <td>5e-6m</td>
                                    <td>0.02m</td>
+
                  <td>0.02m</td>
                                    <td>5e-4rad</td>
+
                  <td>5e-4rad</td>
                                </tr>
+
                </tr>
                            </tbody>
+
              </tbody>
                        </table>
+
            </table>
                        <p>'<strong>r</strong>' is the radius of the film, '<strong>h</strong>' is the deformation length of the film, '<strong>a</strong>' is the length of each side of the CCD camera, '<strong>θ</strong>' is the slip angle between the film and the holophote which we estimate.</p>
+
            <p>'<strong>r</strong>' is the radius of the film, '<strong>h</strong>' is the deformation length of the film, '<strong>a</strong>' is the length of each side of the CCD camera, '<strong>θ</strong>' is the slip angle between the film and the holophote which we estimate.</p>
                        <p>Simulate interference fringe result shown below</p>
+
            <p>Simulate interference fringe result shown below</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/c/cd/0.02-5e-6-5e-4.jpg" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/c/cd/0.02-5e-6-5e-4.jpg" alt=""></p>
                        <p>That just looks like the row image we got before!</p>
+
            <p>That just looks like the row image we got before!</p>
                        <div class="divider"></div>
+
            <div class="divider"></div>
  
                        <h3 id="fringe-analysis" class="scrollspy">Fringe analysis</h3>
+
            <h3 id="fringe-analysis" class="scrollspy">Fringe analysis</h3>
                        <p><strong>Method</strong></p>
+
            <p><strong>Method</strong></p>
                        <p>1.Take a series photos at the same position in a short time.</p>
+
            <p>1.Take a series photos at the same position in a short time.</p>
                        <p>2.Superpose these photos to sharp the edge of every object.</p>
+
            <p>2.Superpose these photos to sharp the edge of every object.</p>
                        <p>3.Choose two point in multi-image, the point must on the black fringes.</p>
+
            <p>3.Choose two point in multi-image, the point must on the black fringes.</p>
                        <p>4.Scaning these two fringes to find the shortest distance between them.</p>
+
            <p>4.Scaning these two fringes to find the shortest distance between them.</p>
                        <p>5.Calculate the radius and rank of every fringes.</p>
+
            <p>5.Calculate the radius and rank of every fringes.</p>
                        <p>6.Calculate the deformation of film.</p>
+
            <p>6.Calculate the deformation of film.</p>
                        <p>More details on our coding using Matlab please refer to <a href="https://github.com/Cintau/2015USTCiGEM/">2015 USTC in Github</a>.</p>
+
            <p>More details on our coding using Matlab please refer to <a href="https://github.com/Cintau/2015USTCiGEM/">2015 USTC in Github</a>.</p>
                        <div class="divider"></div>           
+
            <div class="divider"></div>           
  
                        <h3 id="annex" class="scrollspy">Annex</h3>
+
            <h3 id="annex" class="scrollspy">Annex</h3>
                        <p><strong>Pre-experiment method</strong></p>
+
            <p><strong>Pre-experiment method</strong></p>
                        <p>Optical path in pre-experiment shown below</p>
+
            <p>Optical path in pre-experiment shown below</p>
                        <p><img src="https://static.igem.org/mediawiki/2015/d/d9/20150831005.png" alt=""></p>
+
            <p><img src="https://static.igem.org/mediawiki/2015/d/d9/20150831005.png" alt=""></p>
                        <p>Light shows in <strong>red</strong> is the light from <strong>laser</strong>, light shows in <strong>green</strong> is reflected by <strong>film</strong>, light shows in <strong>purple</strong> is reflected by <strong>holophote</strong>.</p>
+
            <p>Light shows in <strong>red</strong> is the light from <strong>laser</strong>, light shows in <strong>green</strong> is reflected by <strong>film</strong>, light shows in <strong>purple</strong> is reflected by <strong>holophote</strong>.</p>
                        <p>The wave length of our laser is <strong>650nm</strong>.</p>
+
            <p>The wave length of our laser is <strong>650nm</strong>.</p>
                        <p><strong>The distance between 50% reflector and film is about 10cm.</strong></p>
+
            <p><strong>The distance between 50% reflector and film is about 10cm.</strong></p>
                        <p>The film was covered tight on a tube's hole, and we give a perturbation on temperature to change the pressure in tube. So the film would have deformation too, and we could simulate the bacteria force in a physical way.                                   
+
            <p>The film was covered tight on a tube's hole, and we give a perturbation on temperature to change the pressure in tube. So the film would have deformation too, and we could simulate the bacteria force in a physical way.                                   
                    </div>
+
          </div>
                </div>
+
                <div class="col hide-on-small-only m3">
+
                    <div class="toc-wrapper pinned">
+
                        <ul class="section table-of-contents">
+
                            <li>
+
                                <a href="#pre-experiment">Pre-experiment</a>
+
                            </li>
+
                            <li>
+
                                <a href="#modeling-method">Modeling method</a>
+
                            </li>
+
                            <li>
+
                                <a href="#fringe-analysis">Fringes analysis</a>
+
                            </li>
+
                            <li>
+
                                <a href="#annex">Annex</a>
+
                            </li>
+
                        </ul>
+
                    </div>
+
                </div>
+
            </div>
+
 
         </div>
 
         </div>
 
+
         <div class="col hide-on-small-only m3">
         <div id="ROSE-Prediction" class="row">
+
          <div class="toc-wrapper pinned">
            <div class="card hoverable">
+
            <ul class="section table-of-contents">
                <div class="col s12">
+
              <li>
                    <div class="card-content">
+
                <a href="#pre-experiment">Pre-experiment</a>
                        <p>This part introduce a genetically engineered bacteria with inhibition circuit to detect the trace antibiotics. Giving the modeling result of inhibitive circuit and tradition positive control circuit, and show the advantage of inhibitive circuit in trace detection.</p>
+
              </li>
                        <h3 id="basic-hypothesis">Basic Hypothesis</h3>
+
              <li>
                        <ul>
+
                <a href="#modeling-method">Modeling method</a>
                            <li>Gene expression under regulation has a linear relation with inducer or inhibitor at an appropriate concentration range.</li>
+
              </li>
                            <li>Modeling on quorum sensing is based on steady-state model.</li>
+
              <li>
                        </ul>
+
                <a href="#fringe-analysis">Fringes analysis</a>
                        <p>Variables containing:</p>
+
              </li>
                        <p><em>S: Concentration of antibiotics, such as sulfamonamide or tetracycline.<br>A: Concentration of AHL<br>R: Concentration of LuxR<br>RA: AHL-LuxR complex<br>cI: Concentration of cI<br>G: Relative fluorescence internsity<br>F: micF transcription initiation effciency<br>C: Lac transcription initiation effciency<br>X: Promoter Lux efficiency<br>Λ: Promoter λP efficiency</em></p>
+
              <li>
                        <p><strong>In antibiotic sensing part:</strong></p>
+
                <a href="#annex">Annex</a>
                        <p>\(J=-D\nabla C(1)\)</p>
+
              </li>
                        <p>\(\frac{d}{dt}[AHL]=k_{2}F(2)\)</p>
+
            </ul>
                        <p><strong>About AHL diffusion modeling:</strong></p>
+
          </div>
                        <p>Assume bacteria expressing AHL are uniform distributed, and consider as a single bacteria, AHL production speed is:</p>
+
                        <p>\(\frac{d}{dt}A(3)\)<p>
+
                        <p>At the distance <em>r</em>, the concentration contribution of this bacteria is <em>a</em>. Let the diffusion constant as <em>D</em>. According to <strong><em>Fick's Law</em></strong>:</p>
+
                        <p>\(J=-D\nabla C(4)\)<p>
+
                        <p>Owing to the uniform distribution of producer, the concentration of AHL is uniform as well, thus:</p>
+
                        <p>\(A=k[AHL](5)\)<p>
+
                        <p><strong>In Bacteria II</strong></p>
+
                        <p>Due to the promoter lac is induced by IPTG, the concentration of R is stable and maximum:</p>
+
                        <p>\(R+A\rightarrow RA(6)\)<p>
+
                        <p>\([RA]=k_{3}[R][A] (7)\)<p>
+
                        <p>\([X]=k_{4}[RA] (8)\)<p>
+
                        <p>\(\frac{d}{dt}[cI]=k_{5}[X] (9)\)<p>
+
                        <p>\(\lambda =1-k_{6}[cI] (10)\)<p>
+
                        <p>\(\frac{d}{dt}G=k_{7}\lambda -k_{8}G (11)\)</p>
+
                        <p>Consequently, we could get our exact modeling result using Matlab:</p>
+
                        <p>Time consumption compared to traditional reporter system:</p>
+
                        <p>Concentration resolution response compared to traditional reporter system:</p>
+
                        <p><img src="https://static.igem.org/mediawiki/2015/1/1b/20150906Circuit.jpg" alt="图片名称"></p>
+
                        <p>More information on our code please refer to <a href="https://github.com/Cintau/2015USTCiGEM">Github:2015USTCiGEM</a>.</p>                       
+
                    </div>
+
                </div>
+
            </div>
+
 
         </div>
 
         </div>
 +
      </div>
 +
    </div>
  
 +
    <div id="ROSE-Prediction" class="row">
 +
      <div class="card hoverable">
 +
        <div class="col s12">
 +
          <div class="card-content">
 +
            <p>This part introduce a genetically engineered bacteria with inhibition circuit to detect the trace antibiotics. Giving the modeling result of inhibitive circuit and tradition positive control circuit, and show the advantage of inhibitive circuit in trace detection.</p>
 +
            <h3 id="basic-hypothesis">Basic Hypothesis</h3>
 +
            <ul>
 +
              <li>Gene expression under regulation has a linear relation with inducer or inhibitor at an appropriate concentration range.</li>
 +
              <li>Modeling on quorum sensing is based on steady-state model.</li>
 +
            </ul>
 +
            <p>Variables containing:</p>
 +
            <p><em>S: Concentration of antibiotics, such as sulfamonamide or tetracycline.<br>A: Concentration of AHL<br>R: Concentration of LuxR<br>RA: AHL-LuxR complex<br>cI: Concentration of cI<br>G: Relative fluorescence internsity<br>F: micF transcription initiation effciency<br>C: Lac transcription initiation effciency<br>X: Promoter Lux efficiency<br>Λ: Promoter λP efficiency</em></p>
 +
            <p><strong>In antibiotic sensing part:</strong></p>
 +
            <p>\(J=-D\nabla C(1)\)</p>
 +
            <p>\(\frac{d}{dt}[AHL]=k_{2}F(2)\)</p>
 +
            <p><strong>About AHL diffusion modeling:</strong></p>
 +
            <p>Assume bacteria expressing AHL are uniform distributed, and consider as a single bacteria, AHL production speed is:</p>
 +
            <p>\(\frac{d}{dt}A(3)\)<p>
 +
            <p>At the distance <em>r</em>, the concentration contribution of this bacteria is <em>a</em>. Let the diffusion constant as <em>D</em>. According to <strong><em>Fick's Law</em></strong>:</p>
 +
            <p>\(J=-D\nabla C(4)\)<p>
 +
            <p>Owing to the uniform distribution of producer, the concentration of AHL is uniform as well, thus:</p>
 +
            <p>\(A=k[AHL](5)\)<p>
 +
            <p><strong>In Bacteria II</strong></p>
 +
            <p>Due to the promoter lac is induced by IPTG, the concentration of R is stable and maximum:</p>
 +
            <p>\(R+A\rightarrow RA(6)\)<p>
 +
            <p>\([RA]=k_{3}[R][A] (7)\)<p>
 +
            <p>\([X]=k_{4}[RA] (8)\)<p>
 +
            <p>\(\frac{d}{dt}[cI]=k_{5}[X] (9)\)<p>
 +
            <p>\(\lambda =1-k_{6}[cI] (10)\)<p>
 +
            <p>\(\frac{d}{dt}G=k_{7}\lambda -k_{8}G (11)\)</p>
 +
            <p>Consequently, we could get our exact modeling result using Matlab:</p>
 +
            <p>Time consumption compared to traditional reporter system:</p>
 +
            <p>Concentration resolution response compared to traditional reporter system:</p>
 +
            <p><img src="https://static.igem.org/mediawiki/2015/1/1b/20150906Circuit.jpg" alt="图片名称"></p>
 +
            <p>More information on our code please refer to <a href="https://github.com/Cintau/2015USTCiGEM">Github:2015USTCiGEM</a>.</p>                       
 +
          </div>
 +
        </div>
 +
      </div>
 
     </div>
 
     </div>
 +
 +
  </div>
 
</div>
 
</div>
  
 
</html>
 
</html>
 
{{USTC/footer}}
 
{{USTC/footer}}

Revision as of 19:10, 18 September 2015

Overview

This part starts with the bacteria movement ability, analyse the interaction between bacteria and the special film, and obtain the requests of the material properties eventually.

Force of Single Bacterium

The interaction between bacteria and film is essential for our work. To characterize the additional pressure exerted by bacteria, we need to calculate the force produced by single bacterium at beginning.

Assume the driving force of the movement of single bacteria is \(F_{0}\) in horizontal plain.

When bacteria move without extra environmental impact, let the speed as V1,

\(F_{0}=f_{1}=kV_{1}\)

Where f1 means the resistant force bacteria containing in water solution, k is a constant called drag coefficient at this conditions.

Besides, in the gravitational field, if we consider bacteria dragged by gravity in solution, then the static equation is revised as below,

\(mg-\rho Vg=f_{2}=kV_{2}\)

Where rho represents the density of solution, V indicates the extra volume of liquid immersed with bacteria, g means the acceleration of gravity. Because of the same interaction between solution and bacteria, in gravitational field, bacteria share the same k with the horizontal movement constant.

Assume the motor ability of each bacteria does not change. Then, in accordance with the data in previous research, the speed of bacterial movement((\(V_{1}\))) is approximately ~10\(\mu m\)/s, while the speed of bacterial sedimentation((\(V_{2}\))) ~\(\mu m\)/s.

And considering the size of single bacterium, assume bacteria as cylinder, whose diameter equals 0.5um and length is 1~3\(\mu m\).

Calculating with all data, consequently, we concluded that driving force of bacteria is \(10^{-13} N\) by solving the equations.

Film Deformation Modeling

Additional Pressure Produced by Bacteria

Now let's see how to calculate additional pressure caused by bacteria.

To prepare different size of film, we prepare two clips to match film,

This is the schematic program of special film I, used for circle film.

图片名称

and this is film II for square film.

图片名称

Film I

Firstly, let's check the geometric size of our special film I. The film is shown in green edge and the clip that used to fix the film presents in black edge. The film I is a circle with the radius(r) of 2cm. The thickness(d) of film is 0.1mm.

Assume the numerical density(σ) of bacteria is ~10000/mm^2, which means a single bacteria occupying the area of approximately ~100 \(\sim 100 \mu m^2\).

Let's assume addition pressure:

\(\Delta P= \frac{\sum F}{S}=\sigma F_{0}\)

Calculating with these data, we concluded additional pressure ΔP is ~0.001Pa.

The wavelength of laser we used is 650nm. Thus deformation is recommended at ~um level.

Stress Analysis

This is the schematic diagram of of deformed film. Assume the radius of film is r, deformation range equals h.

The film is subject to several forces acting, including force f given by bacteria and tensile force F through the film.

Let's get some approximation on this model. As the deformation range(h) is much more smaller than the radius(r) of the film(h<

\(f=F\times \frac{h}{r}\)

\(\frac{F}{2\pi rd}=\frac{\Delta r}{r}\times G\)

\(\Delta r=\frac{1}{2}\times r\times (\frac{h}{r})^{2}\)

where f is the resultant force of the bacteria, F is the tensile force in the film, h is the deformation distance, r is the radius of the film,Δr is the variation of the radius, which is r, d is the thickness of the film, G is the Young Modulus. Solving these equations, we are able to get Young Modulus, a critical physical parameters to depicting the characteristic of film candidates.

Film II

Similarly, we are able to calculate the characteristic of film.

The schematic program of film goes like this,

图片名称

The film is shown in black edge and the clip that used to fix the film presents in green edge. The film II is a square with the parameter of film is 2.8cmX2.5cm. The thickness(d) of film is 0.16mm.

The equations after stress analysis are,

\(f=2F\times \frac{h}{b}\)

\(\frac{F}{a c}=\frac{\Delta b}{b}\times G\)

\(\Delta b=\frac{1}{2}\times b\times (\frac{h}{b})^{2}\)

Then, we are able to get Young Modulus, a critical physical parameters to depicting the characteristic of film candidates.

Film Candidates

Assume that 1% of bacteria are push ahead statistically, then the additional pressure given by bacteria is ΔP=0.01xσF0. After solving these equations above, we ultimately get the Young modulus of material required G <1GPa in order to get ~um order deformation.

There are some common material's Young modulus,

Material type Young modulus(GPa)
Gray cast iron 118~126
Carbon steel 206
Roll copper 108
Brass 89~97
Roll aluminium 68
Roll zinc 82
Lead 16
Rubber 0.00008
Polyamides 0.011
High pressure polyethylene 0.015~0.025
Low pressure polyethylene 0.49~0.78
Polypropylene 1.32~1.42
Glass 50

Therefore, we selected several materials as possible films: low pressure polyethylene, rubbers, and glass as our material of the film.

See our results on film candidates at Results-Film Candidate

Just think about it, if every bacteria pull together, we can detect the deformation even the film is made of steel and even bigger than steel.

Overview

This part introduces the data of adhesion experiment, makes exploration and interpretation on bacteria adhesion dynamics. Through the modeling of bacteria adhesion, we can get some characteristics important but difficult to directly measure on bacteria adhesion and reaction to antibiotics. Also give some irreplaceable constructive opinions and key indicators on the operation of detecting the concentration of antibiotics.

Bacterial Absorption Simulation

Let's assume variables firstly,

[C]: Concentration of bacteria.(/m^3)

S: Area of film.(m^2)

V: Average swiming speed of bacteria.(m/s)

Vz: Average swiming speed component in the z axis, which is perpendicular to S.(m/s)

σ: Density of the adhesive bacteria.(/m^2)

N: Total number of sticked bacteria.

m: Movement percentage of bacteria.(%)

M: Exact movement number of bacteria.

Bacterial Absorption Dynamics Fits Langmuir Equation

Assuming velocity of bacteria in any direction is the same, let's set it V,

Figure1:Moving speed of bacteria

and irrespective of contacting with each other when swimming, we are able to conclude bacterial movement is free.

Then we calculate the average velocity in z axis,

\(V_{z}=\int_{0}^{\frac{\pi }{2}}V\times cos\theta \times \frac{dS}{S}=\int_{0}^{\frac{\pi }{2}}\frac{V}{2}cos\theta sin\theta d\theta =\frac{V}{4}\)

Consider during the interval dt, in area dS, there are dN bacteria in tiny volume dS*Vzdt hitting the wall whose area is S. Schematic image illustrates the process mentioned above,

Figure2:Interaction between bacteria and film

Consequently we can know that

\(dN=C\times dS\times V_{z} dt\)

Because the number of bacteria in solution is much more larger than it on the glass surface whose area is S. So the concentration of bacteria (C) can be regarded as steady during the measurement period.

Assuming the number of hitting wall bacteria is stable, the surface can only adhere one layer of bacteria, that is the place which has already adhered bacteria can not stick any more bacteria. This means we could use Langmuir Adsorption Isotherm to solve this problem!

Let's see how we figure out this issue using Langmuir Equation. Consider in a current area S, the density of bacteria on surface is σ, and during a interval dt, the change of bacteria density is

\(Sd\sigma =K_{a}\times (1-\frac{\sigma }{\sigma _{0}})\times dN-K_{d}\times S\sigma dt\)

Where Ka is the adhesive rate of each hit, Kd is the drop rate of the adhered bacteria.

Then, after solving this Ordinary Differentiate Equation, ODE, we got the equation shown below,

\sigma (t)=\frac{K_{a}CV_{z}\sigma _{0}}{KCV_{z}+K_{a}\sigma _{0}}\times (1-e^{-\frac{K_{a}CV_{z}+K_{d}\sigma _{0}}{\sigma _{0}}\times t})

According to this result, the density of bacteria at time t is related to adhesive rate of bacteria Ka, concentration of bacteria c and velocity of bacteria Vz. And we can let (KaCVz/(Kd*σ0+KaCVz)) equals an integrative constant, K. In addition, we cannot start recording the image data the moment we put the bacteria on the cover glass in reality, so there should be a time delay in our modeling. Thus we got the accurate equation depicting the density of bacteria time t as,

\(\sigma (t)=K\sigma _{0}\times (1-e^{-\frac{K_{a}CV_{z}}{K\sigma _{0}}\times (t-t_{0})})\)

In order to fit the data conveniently, we change the equation form into a more general one,

\(\sigma (t)=ae^{-bt}+c\)

Bacteria Density Simulation

With assuming a constant value group:

Ka Kd C Vz σ0
0.5 0.01 10^9/m^3 5um/s 10^10/m^2

we got the plot expressing the bacteria density variate through time,

Figure3:Bacteria Density-Time simulation result

which is quite similar to the real data.

Bacteria Counting Program

This program is used to calculate the amount of bacteria and get the percentage of moving bacteria, which is essential for our further research. More details on our coding using Matlab please refer to 2015 USTC in Github.

The principle of programming is told below:

  1. Loading the image.
  2. Calculate a self-adapting or special threshold value in the image binay progress.
  3. Use mathematical morphology operations.
  4. Use filtering processing make the image more smooth.
  5. Delete the small area to reduce the error noises.
  6. Auto-counting the number of objects.

Now we are able to count bacteria using this program, see what we got!

Adhesive Assay Analysis-Bacteria Number

Now we got the theoretical bacteria density variation formula and an efficient program to demonstrate the real number of bacteria on film. We are trying to explain everything we gained from our experiment. Results are posted in Results-Adhesion assay.

Using MATLAB® to simulate these data with the function 'f(x)=a exp(-b*x)+c', here is our analysis,

HCB1-PLL(+)-no antibiotics number-time

Fitting result are shown below

Figure4:HCB1-PLL(+)-no antibiotics number-time fitting result

the constants value and details are,

Figure5:HCB1-PLL(+)-no antibiotics number-time fitting details

HCB1-PLL(+)-0.1ug/ml Cl number-time

Fitting result:

Figure6:HCB1-PLL(+)-0.1ug/ml Cl number-time fitting result

Constant value and details:

Figure7:HCB1-PLL(+)-0.1ug/ml Cl number-time fitting details

HCB1-PLL(+)-0.5ug/ml Cl number-time

Fitting result:

Figure8:HCB1-PLL(+)-0.5ug/ml Cl number-time fitting result

Constant value and details:

Figure9:HCB1-PLL(+)-0.5ug/ml Cl number-time fitting details

HCB1-PLL(+)-1ug/ml Cl number-time

Fitting result,

Figure10:HCB1-PLL(+)-1ug/ml Cl number-time fitting result

Constant value in detail,

Figure11:HCB1-PLL(+)-1ug/ml Cl number-time fitting details

PAO1-PLL(+)-no antibiotics number-time

Fitting plot is

Figure12:PAO1-PLL(+)-no antibiotics number-time fitting result

Constants value and details,

Figure13:PAO1-PLL(+)-no antibiotics number-time fitting details

PAO1-PLL(-)-no antibiotics number-time

Figure14:PAO1-PLL(-)-no antibiotics number-time fitting result

Figure15:PAO1-PLL(-)-no antibiotics number-time fitting details

All these perfect fitting results illustrate that our hypothesis of adhesion mechanism is totally correct. All Modelings and image analysis programs hit the truth.

Adhesive Assay Analysis-Movement Percentage

Now we know that bacteria can move straight because of its flagellum rotating counterclockwise according to previous research. However, due to the stickiness of PLL, some flagella may stick to film when spinning. Assuming the rate of stick (P) is constant, the movement percentage of bacteria will present in an exponential form changing through time.

Assume the function of movement percentage ( M) related to time is,

m=m0exp(-kt)

Note: the data is fixed by the previous analysis result t0.

PAO1-PLL-no antibiotics

Fitting plot

Figure16:PAO1-PLL-no antibiotics movement percentage-time fitting result

Constant value and details

Figure17:PAO1-PLL-no antibiotics movement percentage-time fitting details

We can see that the raw data perfectly match to this model.

Important Parameters in Adhesion Equation

According to the fitting results shown above and equations, we could get some useful information when operating NDM, such as,

  • Initiation Moment (t0)
  • Adhesion Ability

Initiation Moment(t0)

Because we can not start recording the image data the moment we put the bacteria solution on the cover glass, so there is a starting time delay in the equation. According to our model, we are able to retrospect the exact the moment when we conduct experiment,

\(\because a=-c\times e^{-bt_{0}} \therefore t_{0}=\frac{ln(-\frac{a}{c})}{-b}\)

Substituting this function into fitting result, we can get the real starting time of each test. Results are delivered below:

Conditions PAO1-PLL(-)-0 PAO1-PLL(+)-0 HCB1-PLL(+)-0 HCB1-PLL(+)-0.1 HCB1-PLL(+)-0.5 HCB1-PLL(+)-1
t0 60.3s 33.3s 24.4s 109.2s 39.5s 60.3s

It is interesting that we could know the "Initiation moment" through our data analysis, which is very cool.

Adhesion Ability

Another intriguing and important property we got through our data analysis is the adhesion ability(Bacteria to Cover Glass)(AA-B-CS in brief).

According to the fitting results and modeling equation, the derivative of the fitting function at the beginning(t0) is the bacteria number growth rate in its maximum. So we defined this derivative value as the adhesion ability of the bacteria solution to cover glass, or call it AA-B-CS for short.

Refering to the modeling result, we know that:

AA-B-CS=dσ/dt|(t=0)=KaCVz=c*b

where, c and b are the constant value in fitting result.

This equation told us AA-B-CS relates to Ka, the adhesion rate of bacteria on every hit, C, the concentration of bacteria solution, Vz, the average swim speed of the bacteria. This explains why we emphasize both bacteria and film material when we defined this parameter.

The AA-B-CS of HCB1 shown in table,

Conditions HCB1-PLL(+)-0 HCB1-PLL(+)-0.1 HCB1-PLL(+)-0.5 HCB1-PLL(+)-1
AA-B-CS 2.01 6.69 12.64 8.23

Note: The bacteria solution in 'HCB1-PLL(+)-0' sample was not the same with other samples, so the AA-B-CS value is much different with other's.

Surprisingly, we found that the concentration of antibiotics doesn't effect the AA-B-CS in our assay, which suggests that we are able to use the same type of bacteria treated with antibiotic in different concentrations, which is another important theoretical base of our NDM.

Experiment Guidance

In Adhesion Assay we finally could know several important things,

  • Film-coating time
  • Bacteria-film interaction time(Ti)
  • Concentration of the bacteria solution,
  • Observation Moment

All of these can be known through the pre-test results analysis.

Film-coating time

Through the pre-test and data in paper, we use 20ug/ml poly-L-lysine coating the film over 4 hours or overnight at the temperature 4℃ eventualy.

Bacteria-film interaction time(Ti)

Because the motility of bacteria will decrease when we do not administrate antibiotics. So we need to balance the total number of bacteria and motility. If we implement the data from "PAO1-PLL-0" assay as sample to analyse the best time of bacteria-film interaction time. We got the best interaction time is the moment when the number of movement bacteria reach the maximum value.

The total movement bacteria is,

\(M=S\sigma m\)

Getting S, σ and m in detail, we got,

\(M=c(1-e^{-bt})\times m_{0}e^{-kt}\)

Now we can simulate those data!

Figure18:Movement percentage-Time in adhesion simulation figure

Thus we highly recommend the Bacteria-film intraction time(Ti) is approximately 100s after treating with bacteria solution, which means since you inoculate the bacteria about 100s, you should put the film into your sample solution and determine its antibiotics concentration.

Concentration of bacteria solution

In test "PAO1-PLL-0", the bacteria solution was culture overnight in 37℃(which means the bacteria was in platform stage). diluted bacteria solution 50 times.

Observation Moment

If we want to observe the deformation of the film, the bacterial additional pressure on film should reach a stable stage. Assume there are K% of inactivated bacteria move when administrating with antibiotics. Then the movement percentage differential equation will be changed to this:

\(\frac{dm}{dt}=(1-m)K-bm\)

After solving this differential equation, we received a m to t function:

\(m(t)=\frac{K+(m_{0}k-(1-m_{0})K)e^{-(K+k)t}}{K+k}\)

Let \(m_{0}\)=0.5, and choose different 'K'. We are able to acquire different simulating curve.(According to previous analysis, 'K'=0.0065.)

Figure19:Movement percentage-Time when add antibiotics simulation figure

Very luckily, that's very similar to our experiment data,

Figure20:Movement percentage-Time when add antibiotics real data

If we want to limit the error probability less than 5%, we need the movement percentage reach over 95% of the maximum or minimun value. According to the simulation result, when 'm' reach 95% of its maximum or minimum value(K/(K+k)), t~100s.

Consequently, we recommend user to get the results in NDM, you should wait approximately 100s after putting film into optical path.

This part explain the fundamental principle of our detecting method -- interference. Develop a pre-experiment to verifiy the modeling in advance. Give a method to process the interference image and calculate the deformation of the film in a high precision.

Pre-experiment

In the pre-experiment(method shown in annex), we use reflector and film get interference fringes and catch picture like this

That's a typical newton's rings interference.

Modeling method

Consider the deformation of film.

As the deformation range(h) is much more smaller than the radius(r) of the film (h<<r),

we can consider the light is approximate paraxial spherical.

The area of CCD camera is small(~cm x cm), so the interference is approximate paraxial spherical as well.

In perfect situation, light path sketch shown below.(Light shows in blue line is the reflected light from holophote, light shows in red is the reflected light from film.)

L is the distance form the virtual image to the CCD camera.

Because the virtual image of holophote and the film can not set strict parallel in actual situation.

The light path sketch changes to this(Light shows in blue line is the reflected light from holophote, light shows in red is the reflected light from film.)

We could use the method of coordinate transformation to simplify them like that(Light shows in blue line is the reflected light from holophote, light shows in red is the reflected light from film.)

With the parameters shown in table

r h a θ
0.02m 5e-6m 0.02m 5e-4rad

'r' is the radius of the film, 'h' is the deformation length of the film, 'a' is the length of each side of the CCD camera, 'θ' is the slip angle between the film and the holophote which we estimate.

Simulate interference fringe result shown below

That just looks like the row image we got before!

Fringe analysis

Method

1.Take a series photos at the same position in a short time.

2.Superpose these photos to sharp the edge of every object.

3.Choose two point in multi-image, the point must on the black fringes.

4.Scaning these two fringes to find the shortest distance between them.

5.Calculate the radius and rank of every fringes.

6.Calculate the deformation of film.

More details on our coding using Matlab please refer to 2015 USTC in Github.

Annex

Pre-experiment method

Optical path in pre-experiment shown below

Light shows in red is the light from laser, light shows in green is reflected by film, light shows in purple is reflected by holophote.

The wave length of our laser is 650nm.

The distance between 50% reflector and film is about 10cm.

The film was covered tight on a tube's hole, and we give a perturbation on temperature to change the pressure in tube. So the film would have deformation too, and we could simulate the bacteria force in a physical way.

This part introduce a genetically engineered bacteria with inhibition circuit to detect the trace antibiotics. Giving the modeling result of inhibitive circuit and tradition positive control circuit, and show the advantage of inhibitive circuit in trace detection.

Basic Hypothesis

  • Gene expression under regulation has a linear relation with inducer or inhibitor at an appropriate concentration range.
  • Modeling on quorum sensing is based on steady-state model.

Variables containing:

S: Concentration of antibiotics, such as sulfamonamide or tetracycline.
A: Concentration of AHL
R: Concentration of LuxR
RA: AHL-LuxR complex
cI: Concentration of cI
G: Relative fluorescence internsity
F: micF transcription initiation effciency
C: Lac transcription initiation effciency
X: Promoter Lux efficiency
Λ: Promoter λP efficiency

In antibiotic sensing part:

\(J=-D\nabla C(1)\)

\(\frac{d}{dt}[AHL]=k_{2}F(2)\)

About AHL diffusion modeling:

Assume bacteria expressing AHL are uniform distributed, and consider as a single bacteria, AHL production speed is:

\(\frac{d}{dt}A(3)\)

At the distance r, the concentration contribution of this bacteria is a. Let the diffusion constant as D. According to Fick's Law:

\(J=-D\nabla C(4)\)

Owing to the uniform distribution of producer, the concentration of AHL is uniform as well, thus:

\(A=k[AHL](5)\)

In Bacteria II

Due to the promoter lac is induced by IPTG, the concentration of R is stable and maximum:

\(R+A\rightarrow RA(6)\)

\([RA]=k_{3}[R][A] (7)\)

\([X]=k_{4}[RA] (8)\)

\(\frac{d}{dt}[cI]=k_{5}[X] (9)\)

\(\lambda =1-k_{6}[cI] (10)\)

\(\frac{d}{dt}G=k_{7}\lambda -k_{8}G (11)\)

Consequently, we could get our exact modeling result using Matlab:

Time consumption compared to traditional reporter system:

Concentration resolution response compared to traditional reporter system:

图片名称

More information on our code please refer to Github:2015USTCiGEM.

Contact Us

University of Science and Technology of China, No.96, JinZhai Road Baohe District,Hefei,Anhui, 230026,P.R.China.

Links