Team:KU Leuven/Modeling/Toulouse

In numerical
simulation
a computational
molecule describes
the space and
time relationship
of data.

Toulouse FBA Model

We cooperated with Toulouse on the modeling. Here we describe the Flux-Balance-Analysis the Toulouse team generously performed for us.
Flux balance analysis is a widely used approach for studying the flow trough metabolic networks. In our case we are interested in the Leucine and AHL production rates of the type A cells. To obtain these values toulouse ran a FB analysis. When a FBA is set up. The metabolic network of the organism in question is represented as a matrix $\mathbf{S}$ of size $m \times n$ is filled with the stoichiometric constants of each reaction. Each of the $m$ matrix rows represents a unique compound. Similarly each of the n columns represents one unique reaction. Next a vector $\mathbf{v}$ of length $n$ is defined which contains the flux trough each reaction. Finally the vector $mathbf{x}$ is defined to contain the concentrations of each metabolite. The steady state solution in the insteresting one therefore: $$ \frac{dx}{dt} = \mathbf{Sv} = 0 $$

Contact

Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone n°: +32(0)16 32 73 19
Mail: igem@chem.kuleuven.be