Team:UGA-Georgia/Description

Project Description

Methanococcus maripaludis is a model organism for Archaea, which affords researchers the beneficial qualities such as (1) producing methane used as biogas and (2) manufacturing isoprenoids as precursors for high-value biochemicals. However, there are few genetic tools available for metabolic engineering Archaea. Our goal is to develop some useful tools for synthetic biology of Archaea. Building on our past M. maripaludis projects, which created and characterized a mCherry reporter system and a recombinant mutant making geraniol, our team is now working to (1) create, characterize and model a ribosome-binding site (RBS) library using the mCherry reporter system and (2) model geraniol production of the recombinant M. maripaludis using flux balance analyses. Preliminary results have shown varying levels of expression in the RBS library, and increased geraniol yield from some growth substrates. Additionally, our team has initiated an Archaeal InterLab Study to further characterize the reproducibility of our mCherry reporter system.

Why an Archaea in Synthetic Biology?

The goal of the UGA iGEM team is to establish the feasibility of Archaea in the field of synthetic biology. Compared to Bacteria and eukaryotes, Archaea have many unique properties such as an isoprenoid based membrane and a diverse autotrophic metabolism [1,2]. Importantly, methanogenic archaea are the only group of organisms that produce methane, a renewable biofuel. However, most Archaea have not been as extensively studied as many of the traditional chassis organism such as E. coli and yeast. Therefore our work aims to elucidate more light work of an Archaea in Synthetic Biology.

But why M. mariplaudis?

Most Archaea are extremophiles, which means that are inherently difficult organisms to work with. M. mariplaudis is Anaerobic Archaea that was isolated from eastern coast salt marshes. The greatest obstacle in working with this Archaea is that it is anaerobic and although this produces significant challenges, M. mariplaudis is more practical to work with then other Archaea, such as the ones that live in extremely hot or acidic environments. Moreover this organism has many characteristics that make it an ideal organism for study. These include its rapid growth, a complete genome sequence, and a robust set of genetic manipulation techniques. Finally, M. mariplaudis produces methane using simple and inexpensive substrates such as Hydrogen, CO2 and formate [3]. Therefore, a role of this organism in the H2 economy can be envisaged