Difference between revisions of "Team:British Columbia/Growing"

Line 96: Line 96:
 
     <div class="panel panel-default">
 
     <div class="panel panel-default">
 
         <div class="panel-heading" role="tab" id="headingEight">
 
         <div class="panel-heading" role="tab" id="headingEight">
           <h4 id="-collapsible-group-item-#3-" class="panel-title">
+
           <h4 id="-collapsible-group-item-#8-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseEight" aria-expanded="false" aria-controls="collapseEight">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseEight" aria-expanded="false" aria-controls="collapseEight">
 
               <h4>Growth Curve Data</h4>
 
               <h4>Growth Curve Data</h4>
 
             </a>
 
             </a>
           <a class="anchorjs-link" href="#-collapsible-group-item-#3-"><span class="anchorjs-icon"></span></a></h4>
+
           <a class="anchorjs-link" href="#-collapsible-group-item-#8-"><span class="anchorjs-icon"></span></a></h4>
 
         </div>
 
         </div>
 
         <div style="height: 0px;" aria-expanded="false" id="collapseEight" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingEight">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseEight" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingEight">
Line 119: Line 119:
 
           <h4 id="-collapsible-group-item-#3-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#3-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
               <h4>Method One</h4>
+
               <h4>Creating Electrocompetent Cells</h4>
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#3-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#3-"><span class="anchorjs-icon"></span></a></h4>
Line 125: Line 125:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p>aah</p>  
+
             <p>Two protocols were attempted for creating electrocompetent cells: one designed for <i>Campylobacter jejuni</i> (similar to <i>G. apicola</i> because it is a microaerophilic bacteria) and one designed for <i>Salmonella</i> (similar to <i>G. apicola</i> because it is also a γ-proteobacteria). </p>
 +
 
 +
<p>Following the protocol from Methods in Microbiology: Bacterial Pathogenesis for <i>Campylobacter jejuni</i> by Williams, P., Ketley, J., & Salmond, G. (2), <i>G. apicola</i> was grown on TSA for 48 hours at 37°C, after which the biomass was removed. Cells were washed with ice cold wash buffer of sucrose and glycerol. Competent cells were then stored at -80°C, or transformed immediately by electroporation.  </p>
 +
 
 +
<p>For the second method, the protocol from Methods in Microbiology, Vol. 47: Electroporation Protocols for Microorganisms (<i>Salmonella</i>) by Nickoloff, J. A. (3), was used to induce competence in <i>G. apicola</i> after 48 hrs of growth at  37°C. Biomass was harvested and washed with HEPES buffer and 10% glycerol. Competent cells were either stored at -80°C or transformed immediately by electroporation.
 +
</p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
  
 
       <div class="panel panel-default">
 
       <div class="panel panel-default">
Line 134: Line 140:
 
           <h4 id="-collapsible-group-item-#4-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#4-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseFour" aria-expanded="false" aria-controls="collapseFour">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseFour" aria-expanded="false" aria-controls="collapseFour">
               <h4>Method Two</h4>
+
               <h4>Creating Chemically Competent Cells</h4>
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#4-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#4-"><span class="anchorjs-icon"></span></a></h4>
Line 140: Line 146:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p></p>  
+
             <p> One protocol for creating chemically competent cells was attempted: designed for <i>E. coli</i> (similar to <i>G. apicola</i> because it is also a γ-proteobacteria). <i>G. apicola</i> was grown on TSA for 48 hours at 37C, after which the biomass was removed. Cells were then washed with a CaCl<sub>2</sub> buffer. Competent cells were stored at -80C, or transformed immediately by heat shock.
 +
</p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 +
  
 
<h2>Transformation</h2>
 
<h2>Transformation</h2>

Revision as of 01:18, 18 September 2015

UBC iGEM 2015

 

Genetic Tool Development

 

For the probiotic, the β-proteobacteria, Snodgrassella alvi, and the γ-proteobacteria, Gilliamella apicola, were chosen since it is distinctly endogenous to the midgut of the European honey bee, Apis mellifera (1). Since these microaerophiles are native and unique to the honey bee gut, introducing imidacloprid and 6-CNA degradation genes into these candidate bacteria would minimize the chance of resistance genes spreading to other insects. Due to the limited amount of existing literature on G. apicola and S. alvi, the project focused on discovering methods to make these bacteria genetically tractable. This included culturing the bacteria on different growth mediums, testing methods to induce competence, and transformation techniques with a variety of plasmids.

Culturing

Due to the novel nature of using G. apicola and S. alvi for the project (as opposed to E. coli), the first step was to determine the optimal method of culturing either bacteria.

Growth Curve

The growth curve of G. apicola was monitored on a plate reader that measured the OD value at 600nm over 36 hours. G. apicola was inoculated into a TSB culture that was previously flushed with 5% CO2 balanced with N2. Additionally, 5% CO2 balanced with N2 was blown onto the plate whilst sealing to ensure the lowest possible amount of oxygen was present in the plate.

Inducing Competence in G.apicola and S.alvi

After identifying the optimal way to culture G. apicola, we moved on to attempting various ways of inducing competence in the bacteria. Due to no existing literature on methods of inserting a plasmid into G. apicola, various protocols known to work on other gram-negative gammaproteobacteria, as well as a protocol for microaerophilic bacteria were attempted. View our protocols here, under Genetic Tool Development.

Transformation

After creating the competent cells, we attempted a variety of transformation protocols. View our protocols here, under Genetic Tool Development.

Acknowledgements

We would like to thank the following people greatly for their assistance, suggestions, and providing the plasmids/materials for us to experiment with.

Walden Kwong for providing the strains of G. apicola and S. alvi.

Dr. Julian Davies for providing the RP1 plasmid.

Dr. John Smit and Dr. John Nomellini for providing the E.coli S17, and SM-10 strains. As well for providing the plasmids PBBR3, PBBR4, PKT210, and PRK293.

Dr. Rachel Fernandez for providing the PBBRMCS1-2 plasmid.

Dr. J. Thomas Beatty for providing the PIND4 plasmid.

Dr. Bob Hancock and Dr. Mangeet Bains for providing PBBR1MCS-3, PBBR1MCS-5, and PBSPIISK(-).

Dr. Michael Murphy and everyone in the Murphy Lab for being amazing hosts.

References

  1. Kwong, W., Engel, P., Koch, H., and Moran, N. (2014). Genomics and host specialization of honey bee and bumble bee gut symbionts. Proceedings of the National Academy of Sciences, 111, 11509-11514.
  2. Williams, P., Ketley, J., & Salmond, G. (Eds.). (1998). Bacterial Pathogenesis. London, UK: Academic Press.
  3. Nickoloff, J. A. (Ed.). (1995). Electroporation Protocol for Microorganisms. Totowa, NJ: Humana Press Inc.
  4. Van der Geize, R. et al. (2002). Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Molecular Microbiology, 45(4). doi:0.1046/j.1365-2958.2002.03069
  5. Koch, H. et al. (2013). Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Molecular Ecology, 22(7). doi: 10.1111/mec.12209
  6. Cho, J. et al. (2003). The Effects of Altering Autoinducer-2 Concentration on Transfer Efficiencies of the F and RPI plasmids to the Quorum Sensing Recicpient Escherichia coli Strain AB1157. Journal of Experimental Microbiology and Immunology (JEMI), 3, pp. 8-14.
  7. Chan, V. et al. (2002). The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli. Journal of Experimental Microbiology and Immunology (JEMI), 2, pp. 207-223.
  8. Rodriguez, R. L, & Denhardt, D. T. (1988). Vectors: A Survey of Molecular Cloning Vectors and Their Uses. Stoneham, MA: Butterworth Publishers.
  9. Plasmid map of pIND4 for Rhodobacter sphaeroides. (2005). Retrieved August 5, 2015.
  10. Schweizer, H. P. (2001). Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. Curr. Opin. Biotechnol. 12:439–445.
  11. Kovach, M.E., Elzer, P.H., Steven Hill, D., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995). Four New Derivatives of the Broad-Host-Range Cloning Vector pBBR1MCS, Carrying Different Antibiotic-Resistance Cassettes. Gene, 166(1). 175-176.