Difference between revisions of "Team:British Columbia/Growing"

 
(19 intermediate revisions by 5 users not shown)
Line 14: Line 14:
 
<div style="clear: both;"></div>
 
<div style="clear: both;"></div>
 
<div id="UBCbody">
 
<div id="UBCbody">
<p>
+
<p align="justify">
For the probiotic, the β-proteobacteria, <i>Snodgrassella alvi</i>, and the γ-proteobacteria, <i>Gilliamella apicola</i>, were chosen since it is distinctly endogenous to the midgut of the European honey bee, <i>Apis mellifera</i> <a href="#ref">(1)</a>. Since these microaerophiles are native and unique to the honey bee gut, introducing imidacloprid and 6-CNA degradation genes into these candidate bacteria would minimize the chance of resistance genes spreading to other insects. Due to the limited amount of existing literature on <i>G. apicola</i> and <i>S. alvi</i>, the project focused on discovering methods to make these bacteria genetically tractable. This included culturing the bacteria on different growth mediums, testing methods to induce competence, and transformation techniques with a variety of plasmids.
+
The γ-proteobacteria, <i>Gilliamella apicola</i>, and the β-proteobacteria, <i>Snodgrassella alvi</i>, were chosen as candidates for our probeeotic due to their endogenous nature in relation to the midgut of the European honeybee, <i>Apis mellifera</i> <a href="#ref">(1)</a>. Native and unique to the honeybee gut, the introduction of imidacloprid and 6-CNA degradation genes into these candidate bacteria would minimize the chance of resistance genes spreading to other insects. Due to the limited amount of existing literature on <i>G. apicola</i> and <i>S. alvi</i>, the project focused on discovering methods to make these bacteria genetically tractable. This included culturing the bacteria on different growth media, testing methods of competence induction, and transformation techniques with a variety of plasmids.
  
 
</p>
 
</p>
 
<h2>Culturing</h2>
 
<h2>Culturing</h2>
<p>Due to the novel nature of using <i>G. apicola</i> and <i>S. alvi</i> for the project (as opposed to <i>E. coli</i>), the first step was to determine the optimal method of culturing either bacteria. </p>
+
<p align="justify">Due to the novelty of using <i>G. apicola</i> and <i>S. alvi</i> for the project (vs. <i>E. coli</i>), the first step was to identify the optimal method of culturing either bacteria. </p>
  
 
           <div class="tab-pane" id="a"><div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 
           <div class="tab-pane" id="a"><div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
Line 26: Line 26:
 
           <h4 id="-collapsible-group-item-#1-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#1-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseOne" aria-expanded="false" aria-controls="collapseOne">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseOne" aria-expanded="false" aria-controls="collapseOne">
               <h4>Culturing: On Plates</h4>  
+
               <h4>Cultivation of <i>S. alvi</i> and <i>G. apicola</i> on Solid Media</h4>  
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#1-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#1-"><span class="anchorjs-icon"></span></a></h4>
Line 32: Line 32:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseOne" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingOne">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseOne" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingOne">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p>The bacterial strains, plated on blood agar (tryptic soy agar supplemented with 5% sheep blood) were generously provided by Waldan K. Kwong from Yale University. Initially, a variety of media was tried to culture <i>S. alvi</i> and <i>G. apicola</i>: LB plates, TSA plates and blood agar plates. Following the methods from Kwong <i>et al.</i> <a href="#ref">(1)</a>, streaked agar plates were incubated in an anaerobic jar equilibrated with 5% CO<sub>2</sub> balanced with N<sub>2</sub>. <i>G.apicola</i> grew best on TSA plates and <i>S. alvi</i> grew best on blood agar plates incubated at 37°C. <i>G.apicola</i> plates showed growth after 48 hrs, whereas <i>S. alvi</i> plates showed growth after four days. Further tests to induce competence for transformation were performed with <i>G. apicola</i> due to the faster growth rate and larger colony size.
+
             <p align="justify"><i>G. apicola</i> and <i>S. alvi</i> were streaked on TSA, LB, and blood agar (5% sheep blood) plates and stored and grown at 37°C in an anaerobic jar flushed with 5% CO<sub>2</sub> balanced with N<sub>2</sub>. Growth was tested on a variety of media types to identify the best growing conditions. Based on the visual estimations of colony size, number, and growing time, <i>G. apicola</i> grew the best on TSA plates, while <i>S. alvi</i> grew best on blood agar (5% sheep blood). <i>G. apicola</i> and <i>S. alvi</i> colonies gave distinct colonies after 48 and 96 hours, respectively, in the microaerophilic chamber.
 +
<div style="clear:both;"></div>
 +
<div style="width:1000px;float:left;">
 +
<div style="width:450px; float:left;margin-right:100px;"> <img src="https://static.igem.org/mediawiki/2015/6/6f/British_Columbiagapicola3.jpg" width="450"><small> Figure 1: <i>S. alvi</i> on a 5% sheep blood agar plate. </small></div>
 +
<div style="width:450px; float:left;">
 +
<img src="https://static.igem.org/mediawiki/2015/8/80/British_Columbia1.jpg" width="450"> <small> Figure 2: <i>G. apicola</i> on a TSA plate. </small> </div>
 +
</div>
 +
 
 +
 
 +
 +
 
 
</p>
 
</p>
 
           </div>
 
           </div>
Line 41: Line 51:
 
           <h4 id="-collapsible-group-item-#2-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#2-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseTwo" aria-expanded="false" aria-controls="collapseTwo">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseTwo" aria-expanded="false" aria-controls="collapseTwo">
               <h4>Culturing: In Liquid Media</h4>
+
               <h4>Cultivation of <i>S. alvi</i> and <i>G. apicola</i> In Liquid Media</h4>
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#2-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#2-"><span class="anchorjs-icon"></span></a></h4>
Line 47: Line 57:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingTwo">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingTwo">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p>The various liquid media tested included brain heart infusion broth, Mueller Hinton broth, LB, Tryptic Soy Broth (TSB), and Super Optimal Broth with Catabolite repression (SOC). Media was prepared in a sealed Hungate tube and flushed with 5% CO<sub>2</sub> balanced with N<sub>2</sub> gas to remove O<sub>2</sub> that was dissolved in the media. Using a syringe, media was inoculated with <i>G. apicola</i> or <i>S. alvi</i> and incubated at 37°C for 48 hrs. <i>S. alvi</i> was not culturable in any of the liquid media tested. <i>G. apicola</i> did grow under anaerobic conditions in TSB requiring 48 hrs to form visible growth.  
+
             <p align="justify">As no liquid growth medium for <i>S. alvi</i> or <i>G. apicola</i> have been reported in literature, a variety of liquid media growth conditions were tested (see Table 1). All liquid cultures were incubated at 37°C for 72 hours, or until turbidity could be visually detected. <i>G. apicola</i> grew in anaerobic TSB. During growth in liquid media, it was noted that <i>G. apicola</i> aggregated into dense snowflake-like colonies (Figure 3). <i>S. alvi</i> did not grow in any liquid media tested. Colony PCR and plating on oxytetracycline plates under microaerophilic conditions were used to confirm growth as <i>G. apicola</i> or <i>S. alvi</i>.
 +
<div style="clear:both;"></div>
 +
<div style="width:1000px;float:left;">
 +
<div style="width:450px; float:left;margin-right:100px;"> <img src="https://static.igem.org/mediawiki/2015/0/01/British_Columbiagapicola.jpg" width="450"><small> Figure 3: <i>G. apicola</i> in TSB. </small></div>
 +
<div style="width:450px; float:left;">
 +
<img src="https://static.igem.org/mediawiki/2015/8/8d/British_Columbiagapicola2.jpg" width="450"> <small> Figure 4: <i>G. apicola</i> in TSB with oxytetracycline. </small></div>
 +
</div>
 +
<div style="clear:both;"></div>
 +
</br>
 +
<style>
 +
.tftable {font-size:12px;color:#333333;width:100%;border-width: 1px;border-color: #ebab3a;border-collapse: collapse;}
 +
.tftable th {font-size:12px;background-color:#e6983b;border-width: 1px;padding: 8px;border-style: solid;border-color: #ebab3a;text-align:left;}
 +
.tftable tr {background-color:#ffffff;}
 +
.tftable td {font-size:12px;border-width: 1px;padding: 8px;border-style: solid;border-color: #ebab3a;}
 +
.tftable tr:hover {background-color:#ffff99;}
 +
</style>
 +
 
 +
<table class="tftable" border="1">
 +
<tr><th>Liquid Media</th><th>Method</th><th><i>S. alvi</i></th><th><i>G. apicola</i></th></tr>
 +
<tr><td>TSB</td><td>Flushed with 5% CO<sub>2</sub> Balanced with N<sub>2</sub> while cold</td><td>No Growth</td><td>No Growth</td></tr>
 +
<tr><td>LB</td><td>Flushed with 5% CO<sub>2</sub> Balanced with N<sub>2</sub> while cold</td><td>No Growth</td><td>No Growth</td></tr>
 +
<tr><td>SOC</td><td>Flushed with 5% CO<sub>2</sub> Balanced with N<sub>2</sub> while cold</td><td>No Growth</td><td>No Growth</td></tr>
 +
<tr><td>MH Broth</td><td>Flushed with 5% CO<sub>2</sub> Balanced with N<sub>2</sub> while cold</td><td>No Growth</td><td>No Growth</td></tr>
 +
<tr><td>Brain Heart Infusion</td><td>Flushed with 5% CO<sub>2</sub> Balanced with N<sub>2</sub> while cold</td><td>No Growth</td><td>No Growth</td></tr>
 +
<tr><td>TSB</td><td>Flushed with 5% CO<sub>2</sub> Balanced with N<sub>2</sub> while hot</td><td>No Growth</td><td>Successful Growth</td></tr>
 +
</table>
 +
 
 +
<p><small>Table 1: Types of liquid media tested for growth of <i>S. alvi</i> and <i>G. apicola</i>. </small></p>
 +
 
 
</p>  
 
</p>  
 
           </div>
 
           </div>
Line 53: Line 91:
 
       </div>
 
       </div>
 
<h2>Growth Curve</h2>
 
<h2>Growth Curve</h2>
<p>The growth curve of <i>G. apicola</i> was monitored on a plate reader that measured the OD value at 600nm over 36 hours. <i>G. apicola</i> was inoculated into a TSB culture that was previously flushed with 5% CO<sub>2</sub> balanced with N<sub>2</sub>. Additionally, 5% CO<sub>2</sub> balanced with N<sub>2</sub> was blown onto the plate whilst sealing to ensure the lowest possible amount of oxygen was present in the plate.
+
<p align="justify">The growth of <i>G. apicola</i> was monitored on a plate reader that measured the OD value at 600nm over 36 hours, and plotted to a curve at fixed time points. For this, <i>G. apicola</i> was inoculated into a TSB culture that was previously flushed with 5% CO<sub>2</sub> balanced with N<sub>2</sub>. Additionally, 5% CO<sub>2</sub> balanced with N<sub>2</sub> was blown onto the plate whilst sealing to ensure the presence of a minimal amount of oxygen in the plate.
 
</p>     
 
</p>     
 +
 +
    <div class="panel panel-default">
 +
        <div class="panel-heading" role="tab" id="headingEight">
 +
          <h4 id="-collapsible-group-item-#8-" class="panel-title">
 +
            <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseEight" aria-expanded="false" aria-controls="collapseEight">
 +
              <h4>Growth Curve Data</h4>
 +
            </a>
 +
          <a class="anchorjs-link" href="#-collapsible-group-item-#8-"><span class="anchorjs-icon"></span></a></h4>
 +
        </div>
 +
        <div style="height: 0px;" aria-expanded="false" id="collapseEight" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingEight">
 +
          <div class="panel-body">
 +
            <p align="justify">The growth curve of G. apicola in a TSB culture was monitored on a plate reader that took OD values at 600nm. As displayed in figure 5, <i>G. apicola</i>’s lag phase lasts 15 hours. Moreover, due to its slow growth, it takes approximately 24 hours to reach a stationary-like growth phase.</p>
 +
 +
<div style="width:900px; margin:auto;"> <img src="https://static.igem.org/mediawiki/2015/2/27/British_ColumbiaGillyCurve.jpg" width="900"><small> Figure 5: <i>G. apicola</i> growth curve. </small></div>
 +
 +
          </div>
 +
        </div>
 +
      </div>
  
 
<h2>Inducing Competence in <i>G.apicola</i> and <i>S.alvi</i></h2>
 
<h2>Inducing Competence in <i>G.apicola</i> and <i>S.alvi</i></h2>
<p>After identifying the optimal way to culture <i>G. apicola</i>, we moved on to attempting various ways of inducing competence in the bacteria. Due to no existing literature on methods of inserting a plasmid into <i>G. apicola</i>, various protocols known to work on other gram-negative gammaproteobacteria, as well as a protocol for microaerophilic bacteria were attempted. <a href="https://2015.igem.org/Team:British_Columbia/Notebook/Protocols">View our protocols here, under Genetic Tool Development.</a>   
+
<p align="justify">After identifying the optimal method to culture <i>G. apicola</i>, we moved on to attempting various ways of inducing competence in the bacteria. Due to the lack of existing literature on methods of inserting a plasmid into <i>G. apicola</i>, we tried various protocols known to work on other gram-negative gammaproteobacteria, and a protocol for microaerophilic bacteria were attempted. <a href="https://2015.igem.org/Team:British_Columbia/Notebook/Protocols">View our protocols here, under Genetic Tool Development.</a>   
 
</p>
 
</p>
 
       <div class="panel panel-default">
 
       <div class="panel panel-default">
Line 63: Line 119:
 
           <h4 id="-collapsible-group-item-#3-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#3-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseThree" aria-expanded="false" aria-controls="collapseThree">
               <h4>Method One</h4>
+
               <h4>Creating Electrocompetent Cells</h4>
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#3-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#3-"><span class="anchorjs-icon"></span></a></h4>
Line 69: Line 125:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p>aah</p>  
+
             <p align="justify">Three protocols were attempted for the creation of electrocompetent cells (<a href="https://static.igem.org/mediawiki/2015/3/3b/UBC_compcellsprotocol.pdf">protocols</a>): one designed for <i>Campylobacter jejuni</i> (similar to <i>G. apicola</i> due to its microaerophilicity), one designed for <i>Salmonella</i> (similar to <i>G. apicola</i>, a γ-proteobacterium), and the last one designed as a general procedure for inducing electrocompetence. </p>
 +
 
 +
<p align="justify">Following the protocol from Methods in Microbiology: Bacterial Pathogenesis for <i>Campylobacter jejuni</i> by Williams, P., Ketley, J., & Salmond, G. <a href="#ref">(2)</a>, <i>G. apicola</i> was grown on TSA for 48 hours at 37°C, after which the biomass was removed. Cells were washed with ice cold wash buffer of sucrose and glycerol. Competent cells were then stored at -80°C, or transformed immediately by electroporation.  </p>
 +
 
 +
<p align="justify">For the second method, the protocol from Methods in Microbiology, Vol. 47: Electroporation Protocols for Microorganisms (<i>Salmonella</i>) by Nickoloff, J. A. <a href="#ref">(3)</a>, was used to induce competence in <i>G. apicola</i> after 48 hrs of growth at  37°C. Biomass was harvested and washed with HEPES buffer and 10% glycerol. Competent cells were either stored at -80°C or transformed immediately by electroporation.
 +
</p>
 +
 
 +
<p align="justify">For the last method, a general electrocompetence procedure was used to induce electrocompetence in <i>G. apicola</i> after 24-30 hours of growth in liquid TSB at 37°C. Bacteria was pelleted with a microcentrifuge and re-suspended in decreasing volumes of sterile deionized water several times, with the last re-suspension being in sterile deionized water + 20% glycerol. The bacteria were then aliquoted (60 μL) into 1.7 mL Eppendorf tubes and subjected to snap freezing with liquid nitrogen. The now-competent cells were either stored at -80°C or transformed immediately by electroporation. </p>
 +
 
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
  
 
       <div class="panel panel-default">
 
       <div class="panel panel-default">
Line 78: Line 143:
 
           <h4 id="-collapsible-group-item-#4-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#4-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseFour" aria-expanded="false" aria-controls="collapseFour">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseFour" aria-expanded="false" aria-controls="collapseFour">
               <h4>Method Two</h4>
+
               <h4>Creating Chemically Competent Cells</h4>
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#4-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#4-"><span class="anchorjs-icon"></span></a></h4>
Line 84: Line 149:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p></p>  
+
             <p align="justify">One protocol designed to create chemically competent cells of <i>E. coli</i> was attempted (<a href="https://static.igem.org/mediawiki/2015/3/3b/UBC_compcellsprotocol.pdf">protocol</a>), due to its cladistic similarity to <i>G. apicola</i>. <i>G. apicola</i> was grown on TSA for 48 hours at 37°C, after which the biomass was removed. Cells were then washed with a CaCl<sub>2</sub> buffer. Competent cells were stored at -80°C, or transformed immediately by heat shock.
 +
</p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 +
  
 
<h2>Transformation</h2>
 
<h2>Transformation</h2>
<p> After creating the competent cells, we attempted a variety of transformation protocols. <a href="https://2015.igem.org/Team:British_Columbia/Notebook/Protocols">View our protocols here, under Genetic Tool Development.</a>   
+
<p align="justify">After creating the competent cells, a variety of transformation protocols were attempted. <a href="https://2015.igem.org/Team:British_Columbia/Notebook/Protocols">View our protocols here, under Genetic Tool Development.</a>   
 
</p>
 
</p>
 
<div class="panel panel-default">
 
<div class="panel panel-default">
Line 102: Line 170:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseFive" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFive">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseFive" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFive">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p></p>  
+
             <p align="justify">Transformation of <i>G. apicola</i> was tested using electroporation <a href="#ref">(2)</a>.  <a href="https://static.igem.org/mediawiki/2015/1/1d/UBC_electroporationprotocol.pdf">Click here</a> to view the protocol. The transformed bacteria were plated on TSA to recover overnight to allow for expression of antibiotic resistance genes or recovered in anaerobic TSB for 1.5 hours. Cells were then transferred onto the appropriate antibiotic plates, supplemented with oxytetracycline (30 μg/mL) added to further select for <i>G. apicola</i> due to its natural resistance. Plates were incubated at 37°C under microaerophilic conditions for 24-48 hours.
 +
</p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
Line 116: Line 185:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseSix" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingSix">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseSix" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingSix">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p></p>  
+
             <p align="justify">Following a standard protocol for the transformation of <i>E. coli</i> via heat shock, each procured plasmid was used in attempts to transform <i>G. apicola</i>. <a href="https://static.igem.org/mediawiki/2015/7/71/UBC_heatshockprotocol.pdf">Click here</a> to view the protocol. Cells were recovered on a TSA plate for 24 hrs (or in anaerobic TSB for 1 hour) after which biomass was harvested and a portion of the recovered cells were plated on the appropriate antibiotic plate for selection of transformants.
 +
</p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
Line 124: Line 194:
 
           <h4 id="-collapsible-group-item-#7-" class="panel-title">
 
           <h4 id="-collapsible-group-item-#7-" class="panel-title">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseSeven" aria-expanded="false" aria-controls="collapseSeven">
 
             <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseSeven" aria-expanded="false" aria-controls="collapseSeven">
               <h4>Conjugation</h4>
+
               <h4>Conjugation/Mobilization</h4>
 
             </a>
 
             </a>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#7-"><span class="anchorjs-icon"></span></a></h4>
 
           <a class="anchorjs-link" href="#-collapsible-group-item-#7-"><span class="anchorjs-icon"></span></a></h4>
Line 130: Line 200:
 
         <div style="height: 0px;" aria-expanded="false" id="collapseSeven" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingSeven">
 
         <div style="height: 0px;" aria-expanded="false" id="collapseSeven" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingSeven">
 
           <div class="panel-body">
 
           <div class="panel-body">
             <p></p>  
+
             <p align="justify">Following a modified protocol that can be viewed <a href="https://static.igem.org/mediawiki/2015/b/b6/UBC_conjugationprotocol.pdf">here</a>, <i>G. apicola</i> was grown on a TSA plate for 48 hrs. Concurrently, a conjugative <i>E.coli</i> strain (SM10 or S17) harbouring the desired plasmid to be mobilized was grown in 5 mL LB and antibiotic for 24 hrs. <i>G. apicola</i> (scraped off a TSA plate) and E. coli were combined and pelleted together, resuspended in 100 μL of LB, plated on TSA, and incubated in a microaerophilic environment for 24 hours at 37°C. Colonies were then replated on selective plates containing antibiotic specific to the plasmid used and oxytetracycline (30μg/mL) to select for <i>G. apicola</i>. <i>G. apicola</i> is naturally resistant to oxytetracycline<a href="#ref">(1)</a>.
 +
</p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 +
<div class="panel panel-default">
 +
        <div class="panel-heading" role="tab" id="headingNine">
 +
          <h4 id="-collapsible-group-item-#9-" class="panel-title">
 +
            <a class="collapsed" data-toggle="collapse" data-parent="#accordion" href="#collapseNine" aria-expanded="false" aria-controls="collapseNine">
 +
              <h4>Post-transformation Verification</h4>
 +
            </a>
 +
          <a class="anchorjs-link" href="#-collapsible-group-item-#9-"><span class="anchorjs-icon"></span></a></h4>
 +
        </div>
 +
        <div style="height: 0px;" aria-expanded="false" id="collapseNine" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingNine">
 +
          <div class="panel-body">
 +
            <p align="justify">Colonies forming on antibiotic plates were subject to two PCR reactions:one to confirm identity as <i>G. apicola</i> and another to test for the presence of transformed plasmid. To confirm bacterial identity, a portion of the <i>G. apicola</i> 16S ribosomal subunit was amplified using specific primers<a href="#ref">(5)</a>. Length and sequence were confirmed by DNA agarose gel electrophoresis and sequencing. Additionally, the colonies were streaked out onto another antibiotic plate to ensure single colony morphology and stability of the plasmid. A second PCR was done to confirm presence of a plasmid. Primers specific for the plasmid were used to amplify a portion of the plasmid and confirmed by DNA agarose gel electrophoresis.  As a positive control, all protocols for inducing competence were tested on <i>E. coli</i> DH5α with plasmid pSB1A3. Selection of antibiotic and PCR were used to confirm that transformed <i>E. coli</i> were harboring the plasmid used. Competence was successful induced in a model gram-negative γ-proteobacteria, <i>E. coli</i>. Table 2 summarizes the variety of methods tested and results obtained. Unfortunately, there were no replicated successes.
 +
 +
 +
<style>
 +
.tftable {font-size:12px;color:#333333;width:100%;border-width: 1px;border-color: #ebab3a;border-collapse: collapse;}
 +
.tftable th {font-size:12px;background-color:#e6983b;border-width: 1px;padding: 8px;border-style: solid;border-color: #ebab3a;text-align:left;}
 +
.tftable tr {background-color:#ffffff;}
 +
.tftable td {font-size:12px;border-width: 1px;padding: 8px;border-style: solid;border-color: #ebab3a;}
 +
.tftable tr:hover {background-color:#ffff99;}
 +
</style>
 +
 +
<table class="tftable" border="1">
 +
<tr><th>Plasmid Name</th><th>Antibiotic Resistance Cassette</th><th><i>E. coli</i> Heat Shock Protocol</th><th><i>C. jejuni</i> Electroporation Protocol</th><th><i>S. enteritidis</i> Electroporation Protocol</th><th>Conjugation</th></tr>
 +
<tr><td>pSB1C3</td><td>Chloramphenicol</td><td>No growth</td><td>No growth</td><td>NA</td><td>Not mobilizable/ conjugative</td></tr>
 +
<tr><td>pSB1A3</td><td>Ampicillin</td><td>No growth</td><td>No growth</td><td>No growth</td><td>Not mobilizable/ conjugative</td></tr>
 +
<tr><td>pBBR1MCS-2<a href="#ref"> (13)</a></td><td>Kanamycin</td><td>No growth</td><td>No growth</td><td>No growth</td><td>Not mobilizable/ conjugative</td></tr>
 +
<tr><td>RP1<a href="#ref"> (7)</a></td><td>Kanamycin, Ampicillin, Tetracycline</td><td>No growth</td><td>No growth</td><td>NA</td><td>No growth</td></tr>
 +
<tr><td>pKT210<a href="#ref"> (8)</a></td><td>Streptomycin</td><td>NA</td><td>No growth</td><td>No growth</td><td>No growth</td></tr>
 +
<tr><td>pRK293<a href="#ref"> (9)</a></td><td>Kanamycin</td><td>NA</td><td>No growth</td><td>NA</td><td>No growth</td></tr>
 +
<tr><td>pIND4 <a href="#ref"> (10)</a></td><td>Kanamycin</td><td>No growth</td><td>No growth</td><td>NA</td><td>No growth</td></tr>
 +
<tr><td>pBBR1MCS-3<a href="#ref"> (13)</a></td><td>Tetracycline</td><td>NA</td><td>No growth</td><td>No growth</td><td>Not mobilizable/ conjugative</td></tr>
 +
<tr><td>pBSPIISK-<a href="#ref"> (11)</a></td><td>Ampicillin</td><td>NA</td><td>No growth</td><td>NA</td><td>No growth</td></tr>
 +
<tr><td>pBBR 3<a href="#ref"> (13)</a></td><td>Steptomycin</td><td>NA</td><td>No growth</td><td>NA</td><td>Not mobilizable/ conjugative</td></tr>
 +
</table>
 +
<p><small>“NA” indicates a plasmid and inducing competence protocol mix that was unable to be performed due to time and material restraints.</small></p>
 +
 +
<p><small>Table 2: Summary of methods tested to induce competence and plasmids subsequently tested for transformation in <i>G. apicola</i>. </small></p>
 +
 +
 +
 +
 +
</p>
 +
          </div>
 +
        </div>
 +
      </div>
 +
 +
 +
 +
  
 
<h2>Acknowledgements</h2>
 
<h2>Acknowledgements</h2>
<p>We would like to thank the following people greatly for their assistance, suggestions, and providing the plasmids/materials for us to experiment with.</p>
+
<p align="justify">We would like to thank the following people greatly for their assistance, suggestions, and providing the plasmids/materials for us to experiment with.</p>
  
<p> Walden Kwong for providing the strains of G. apicola and S. alvi. </p>
+
<p> Waldan Kwong for providing the strains of <i>G. apicola</i> and <i>S. alvi</i>. </p>
 
<p> Dr. Julian Davies for providing the RP1 plasmid.</p>
 
<p> Dr. Julian Davies for providing the RP1 plasmid.</p>
<p> Dr. John Smit and Dr. John Nomellini for providing the E.coli S17, and SM-10 strains. As well for providing the plasmids PBBR3, PBBR4, PKT210, and PRK293.</p>
+
<p> Dr. John Smit and Dr. John Nomellini for providing the <i>E.coli</i> S17, and SM-10 strains. As well for providing the plasmids PBBR3, PBBR4, PKT210, and PRK293.</p>
 
<p> Dr. Rachel Fernandez for providing the PBBRMCS1-2 plasmid.</p>
 
<p> Dr. Rachel Fernandez for providing the PBBRMCS1-2 plasmid.</p>
 
<p> Dr. J. Thomas Beatty for providing the PIND4 plasmid.</p>
 
<p> Dr. J. Thomas Beatty for providing the PIND4 plasmid.</p>

Latest revision as of 02:07, 19 September 2015

UBC iGEM 2015

 

Genetic Tool Development

 

The γ-proteobacteria, Gilliamella apicola, and the β-proteobacteria, Snodgrassella alvi, were chosen as candidates for our probeeotic due to their endogenous nature in relation to the midgut of the European honeybee, Apis mellifera (1). Native and unique to the honeybee gut, the introduction of imidacloprid and 6-CNA degradation genes into these candidate bacteria would minimize the chance of resistance genes spreading to other insects. Due to the limited amount of existing literature on G. apicola and S. alvi, the project focused on discovering methods to make these bacteria genetically tractable. This included culturing the bacteria on different growth media, testing methods of competence induction, and transformation techniques with a variety of plasmids.

Culturing

Due to the novelty of using G. apicola and S. alvi for the project (vs. E. coli), the first step was to identify the optimal method of culturing either bacteria.

Growth Curve

The growth of G. apicola was monitored on a plate reader that measured the OD value at 600nm over 36 hours, and plotted to a curve at fixed time points. For this, G. apicola was inoculated into a TSB culture that was previously flushed with 5% CO2 balanced with N2. Additionally, 5% CO2 balanced with N2 was blown onto the plate whilst sealing to ensure the presence of a minimal amount of oxygen in the plate.

Inducing Competence in G.apicola and S.alvi

After identifying the optimal method to culture G. apicola, we moved on to attempting various ways of inducing competence in the bacteria. Due to the lack of existing literature on methods of inserting a plasmid into G. apicola, we tried various protocols known to work on other gram-negative gammaproteobacteria, and a protocol for microaerophilic bacteria were attempted. View our protocols here, under Genetic Tool Development.

Transformation

After creating the competent cells, a variety of transformation protocols were attempted. View our protocols here, under Genetic Tool Development.

Acknowledgements

We would like to thank the following people greatly for their assistance, suggestions, and providing the plasmids/materials for us to experiment with.

Waldan Kwong for providing the strains of G. apicola and S. alvi.

Dr. Julian Davies for providing the RP1 plasmid.

Dr. John Smit and Dr. John Nomellini for providing the E.coli S17, and SM-10 strains. As well for providing the plasmids PBBR3, PBBR4, PKT210, and PRK293.

Dr. Rachel Fernandez for providing the PBBRMCS1-2 plasmid.

Dr. J. Thomas Beatty for providing the PIND4 plasmid.

Dr. Bob Hancock and Dr. Mangeet Bains for providing PBBR1MCS-3, PBBR1MCS-5, and PBSPIISK(-).

Dr. Michael Murphy and everyone in the Murphy Lab for being amazing hosts.

References

  1. Kwong, W., Engel, P., Koch, H., and Moran, N. (2014). Genomics and host specialization of honey bee and bumble bee gut symbionts. Proceedings of the National Academy of Sciences, 111, 11509-11514.
  2. Williams, P., Ketley, J., & Salmond, G. (Eds.). (1998). Bacterial Pathogenesis. London, UK: Academic Press.
  3. Nickoloff, J. A. (Ed.). (1995). Electroporation Protocol for Microorganisms. Totowa, NJ: Humana Press Inc.
  4. Van der Geize, R. et al. (2002). Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Molecular Microbiology, 45(4). doi:0.1046/j.1365-2958.2002.03069
  5. Koch, H. et al. (2013). Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Molecular Ecology, 22(7). doi: 10.1111/mec.12209
  6. Cho, J. et al. (2003). The Effects of Altering Autoinducer-2 Concentration on Transfer Efficiencies of the F and RPI plasmids to the Quorum Sensing Recicpient Escherichia coli Strain AB1157. Journal of Experimental Microbiology and Immunology (JEMI), 3, pp. 8-14.
  7. Chan, V. et al. (2002). The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli. Journal of Experimental Microbiology and Immunology (JEMI), 2, pp. 207-223.
  8. Rodriguez, R. L, & Denhardt, D. T. (1988). Vectors: A Survey of Molecular Cloning Vectors and Their Uses. Stoneham, MA: Butterworth Publishers.
  9. Plasmid map of pIND4 for Rhodobacter sphaeroides. (2005). Retrieved August 5, 2015.
  10. Schweizer, H. P. (2001). Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. Curr. Opin. Biotechnol. 12:439–445.
  11. Kovach, M.E., Elzer, P.H., Steven Hill, D., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995). Four New Derivatives of the Broad-Host-Range Cloning Vector pBBR1MCS, Carrying Different Antibiotic-Resistance Cassettes. Gene, 166(1). 175-176.