Difference between revisions of "Team:ETH Zurich/Achievements"

Line 38: Line 38:
 
<li><p>We documented and submitted two new <a href="https://2015.igem.org/Team:ETH_Zurich/Basic_Part">basic parts</a> to the iGEM parts registry and created a <a href="https://2015.igem.org/Team:ETH_Zurich/Part_Collection">part collection</a> with 13 parts.</p></li>
 
<li><p>We documented and submitted two new <a href="https://2015.igem.org/Team:ETH_Zurich/Basic_Part">basic parts</a> to the iGEM parts registry and created a <a href="https://2015.igem.org/Team:ETH_Zurich/Part_Collection">part collection</a> with 13 parts.</p></li>
  
<li><p>We characterized <a href="https://2015.igem.org/wiki/index.php?title=Team:ETH_Zurich/Results#Characterization_of_the_lacI-lldR_promoter">two newly designed hybrid promoters</a> and were able to show that one of our combined promoters, P<sub>lac-lldR</sub> (<a href="http://parts.igem.org/Part:BBa_K1847010">K1847010</a>), reacts in a clear AND gate fashion to a combination of lactate and IPTG. To our knowledge, combining these two elements has never been attempted before.</p></li>
+
<li><p>We characterized <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_lacI-lldR_promoter">two newly designed hybrid promoters</a> and were able to show that one of our combined promoters, P<sub>lac-lldR</sub> (<a href="http://parts.igem.org/Part:BBa_K1847010">K1847010</a>), reacts in a clear AND gate fashion to a combination of lactate and IPTG. To our knowledge, combining these two elements has never been attempted before.</p></li>
  
 
<li><p>We Improved and characterized variants of the <i>E. coli</i> <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_LldR_promoter">lldPRD-operon promoter</a> based on the natural version (<a href="http://parts.igem.org/Part:BBa_K822000:Experience">BBa_K822000</a>), on which there is only a limited amount of information available in the Parts Registry and in the literature. The characterization of a <a href="https://2015.igem.org/Team:ETH_Zurich/Results#inMenu"> synthetic promoter library</a> yielded promoter variants that far outperform the wild type LldPRD promoter.</p></li>
 
<li><p>We Improved and characterized variants of the <i>E. coli</i> <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_LldR_promoter">lldPRD-operon promoter</a> based on the natural version (<a href="http://parts.igem.org/Part:BBa_K822000:Experience">BBa_K822000</a>), on which there is only a limited amount of information available in the Parts Registry and in the literature. The characterization of a <a href="https://2015.igem.org/Team:ETH_Zurich/Results#inMenu"> synthetic promoter library</a> yielded promoter variants that far outperform the wild type LldPRD promoter.</p></li>

Revision as of 03:02, 19 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Achievements

We are proud to announce that we accomplished the following objectives:

General Achievements

  • Our engineered E.coli can detect CTC based on their elevated lactate output.

  • We designed a novel system for detection of circulating tumor cells in blood samples using genetically modified bacteria.

  • We designed a genetic circuit that integrates two different cancer specific signals (lactate and AHL) in an AND gate.

  • We designed and validated a tight AND gate with a clear binary behavior.

Experimental Achievements

Modeling Achievements

We would like to thank our sponsors