Difference between revisions of "Team:Cambridge-JIC/Notebook"

Line 65: Line 65:
  
 
graph.commit('optics', 'Optics', $('<div>27 July 2015: Comparison of our prototype with a lab bench microscope Nikon Labophot (retail price around 1,500$). See photos of Pinus stem crossection below. Quality achieved is totally comparable, magnification 400x. We still have some issues with colour, probably due to the illumination by UV LED torch. Resolved temporarily by putting in a yellow filter. Also, first attempts on fluorescence today. Failed. More tomorrow.. </div> <div class="team"><div class="face facen" style="background-image: url(//2015.igem.org/wiki/images/0/02/CamJIC-Notebook-PinusStem.jpg)"><div class="blur"></div><div class="profile"><h3>Our Image</h3><p>Achieved coloured image.</div></div><div class="face facen" style="background-image: url(//2015.igem.org/wiki/images/f/fa/CamJIC-Notebook_PinusStemNikon.JPG)"><div class="blur"></div><div class="profile"><h3>Nikon Image</h3><p>Image obtained with Nikon microscope and digital camera mount. Compare the quality yourself (and the price).</div></div><div class="face facen" style="background-image: url(//2015.igem.org/wiki/images/8/8b/CamJIC-Notebook-Lab.jpg)"><div class="blur"></div><div class="profile"><h3>Wet Lab</h3><p>A biologist and an engineer in the wet lab. Sounds like the start of a joke, but they are actually preparing Marchantia for observation under our to-be-constructed fluorescent microscope. Fully dressed, according to all safety regulations.</div></div></div>'));
 
graph.commit('optics', 'Optics', $('<div>27 July 2015: Comparison of our prototype with a lab bench microscope Nikon Labophot (retail price around 1,500$). See photos of Pinus stem crossection below. Quality achieved is totally comparable, magnification 400x. We still have some issues with colour, probably due to the illumination by UV LED torch. Resolved temporarily by putting in a yellow filter. Also, first attempts on fluorescence today. Failed. More tomorrow.. </div> <div class="team"><div class="face facen" style="background-image: url(//2015.igem.org/wiki/images/0/02/CamJIC-Notebook-PinusStem.jpg)"><div class="blur"></div><div class="profile"><h3>Our Image</h3><p>Achieved coloured image.</div></div><div class="face facen" style="background-image: url(//2015.igem.org/wiki/images/f/fa/CamJIC-Notebook_PinusStemNikon.JPG)"><div class="blur"></div><div class="profile"><h3>Nikon Image</h3><p>Image obtained with Nikon microscope and digital camera mount. Compare the quality yourself (and the price).</div></div><div class="face facen" style="background-image: url(//2015.igem.org/wiki/images/8/8b/CamJIC-Notebook-Lab.jpg)"><div class="blur"></div><div class="profile"><h3>Wet Lab</h3><p>A biologist and an engineer in the wet lab. Sounds like the start of a joke, but they are actually preparing Marchantia for observation under our to-be-constructed fluorescent microscope. Fully dressed, according to all safety regulations.</div></div></div>'));
 
+
/*
graph.commit('march', 'Marchantia', $('<div>27 July 2015: Prepared some microscopic slides with fluorescent <i>Marchantia</i> transformants (express GFP), generously provided by the Hasseloff Lab. However, able to look at them only through the lab fluorescence microscope for now. In the meantime, enjoy this simple <i>Marchantia</i> sample prep protocol: <ol> <li>Use No. 8 cork borer to cut cylinders of carrot core approx. 50 mm long.</li> <li>Place in 70% ethanol and leave overnight (will lose colour).</li> <li>Cut cylinders in half, and place sample between halves (thin sample e.g. <i>Marchantia</i> leaf).</li> <li>Put halves back together with sample at one end, sandwiched in place.</li> <li>Insert the cylinder of carrot into a hand-held microtome.</li> <li>Cut thin slices of carrot + sample using microtome knife.</li> <li>Wash thin sections into beaker using deionised water.</li> <li>Use a pasteur pipette to pick up sample in a drop of water, and drop onto a slide (note: do not include carrot tissue).</li> <li>Cover with glass slip and visualise (brightfield or fluorescence).</li></ol></div>'));
+
graph.commit('march', 'Marchantia', $('<div>27 July 2015: Prepared some microscopic slides with fluorescent <i>Marchantia</i> transformants (express GFP), generously provided by the Hasseloff Lab. However, able to look at them only through the lab fluorescence microscope for now. In the meantime, enjoy this simple <i>Marchantia</i> sample prep protocol: <ol> <li>Use No. 8 cork borer to cut cylinders of carrot core approx. 50 mm long.</li> <li>Place in 70% ethanol and leave overnight (will lose colour).</li> <li>Cut cylinders in half, and place sample between halves (thin sample e.g. <i>Marchantia</i> leaf).</li> <li>Put halves back together with sample at one end, sandwiched in place.</li> <li>Insert the cylinder of carrot into a hand-held microtome.</li> <li>Cut thin slices of carrot + sample using microtome knife.</li> <li>Wash thin sections into beaker using deionised water.</li> <li>Use a pasteur pipette to pick up sample in a drop of water, and drop onto a slide (note: do not include carrot tissue).</li> <li>Cover with glass slip and visualise (brightfield or fluorescence).</li></ol></div>'));*/
 
//]]>
 
//]]>
 
</script>
 
</script>

Revision as of 11:58, 28 July 2015

Notebook