Difference between revisions of "Team:Stanford-Brown/Projects"

Line 85: Line 85:
 
     <div class="container">
 
     <div class="container">
 
       <h1>Welcome to our Projects<small> BiOrigami<small></h1>
 
       <h1>Welcome to our Projects<small> BiOrigami<small></h1>
       <p>See our projects below</p>
+
       <p>For a brief overview of our projects, see below</p>
 
     </div><!--end container-->
 
     </div><!--end container-->
 
   </div><!-- end jumbotron-->
 
   </div><!-- end jumbotron-->
Line 96: Line 96:
 
     <a href="https://2015.igem.org/Stanford-Brown/Vision">
 
     <a href="https://2015.igem.org/Stanford-Brown/Vision">
 
       <div class="col-md-7 well btn btn-default" id="be1">
 
       <div class="col-md-7 well btn btn-default" id="be1">
         <h2 class="featurette-heading">Our Vision<span class="small"> to create biological origami aka BiOrigami</span></h2>
+
         <h2 class="featurette-heading">Our Vision<span class="small"> to create biOrigami: self-folding, biological origami for space missions</span></h2>
         <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
         <p class="lead">Space exploration lies at the inquisitive core of human nature, yet high costs hinder the advancement of this frontier. We are harnessing the replicative properties of biology to create biOrigami—biological, self-folding origami—to reduce the mass, volume, and assembly time of materials needed for space missions. biOrigami consists of two main components: manufacturing substrates biologically and bioengineering folding mechanisms. For substrates, we are developing new BioBricks to synthesize two thermoplastics: polystyrene and polyhydroxyalkanoates. For folding mechanisms, we are using heat-induced contraction of thermoplastics and the contractile properties of bacterial spores. After consulting with experts, we believe that biOrigami could be incorporated into rovers, solar sails, and more. In addition to biOrigami, we are creating a novel method to efficiently transform bacteria by using the CRISPR/Cas9 system, benefitting the broader synthetic biology community. Our project integrates and improves manufacturing processes for space exploration on both the micro and macro levels.</p>
 
       </div>
 
       </div>
 
     </a>
 
     </a>
 
     <div class="col-md-5 well">
 
     <div class="col-md-5 well">
 
       <h2 class="featurette-heading">Our BioBricks</h2>
 
       <h2 class="featurette-heading">Our BioBricks</h2>
       <p class="lead">What are BioBricks? They are Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo. Click to see more.</p>
+
       <p class="lead">The BioBricks that we submitted to the registry . Click to see more.</p>
 
     </div>
 
     </div>
 
   </div>
 
   </div>

Revision as of 06:53, 13 September 2015

Projects

Welcome to our Projects BiOrigami

For a brief overview of our projects, see below

How? with heat, evaporation, and materials that could be produced in space.

Bacteria can produce thermoplastics and cellulose, which can be folded with heat and evaporation. Selectively heating certain parts of a thermoplastic sheet causes the polymers in only that area to contract, causing a macro-scale fold of the sheet. This selective heating can be done by coloring parts of the sheet darker, so they absorb heat faster. As for the evaporation method, bacterial spores expand and contract when in the presence of different levels of relative humidity. Attaching many spores to a long cellulose sheet can cause it to contract, and placing many of these sheets in parallel gives them the ability to move a large amount of weight as the water from the spores evaporates and they all contract in unison.

Generic placeholder image

Polystyrene Engineering E. coli to produce polystyrene

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Polyhydroxyalkanoates Optimizing the production of biological PHA

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

C.A.S.H. Cellulose Associated Spore HYDRAS, or a biological contractile mechanism

Based on work done by Chen et al. at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a contractile mechanism for biOrigami.

Generic placeholder image

CRATER Crisper Assisted Transformation Efficient Reaction

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Copyright © 2015 Stanford-Brown iGEM Team