Difference between revisions of "Team:BGU Israel/Design"

 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{BGU_Israel}}
 
{{BGU_Israel}}
  
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 
 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">
 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">
  
 +
  <head>
  
 +
    <!-- Scripts -->
 +
    <script type="text/javascript"
 +
            src="https://2015.igem.org/Template:BGU_Israel/js/TUM13_jquery-1.10.2?action=raw&ctype=text/javascript">
 +
    </script>
 +
    <script type="text/javascript"
 +
            src="https://2015.igem.org/Template:BGU_Israel/js/TUM13_slimbox2?action=raw&ctype=text/javascript">
 +
    </script>
 +
    <script type="text/javascript"
 +
            src="https://2015.igem.org/Template:BGU_Israel/js/TUM13_bxslider?action=raw&ctype=text/javascript">
 +
    </script>
 +
    <script type="text/javascript"
 +
            src="https://2015.igem.org/Template:BGU_Israel/js/TUM13_Script?action=raw&ctype=text/javascript">
 +
    </script>
 +
    <script type="text/javascript"
 +
            src="https://2015.igem.org/Template:BGU_Israel/js/TUM13_history?action=raw&ctype=text/javascript">
 +
    </script>
  
    <head>
+
    <!-- Stylesheets -->
 
+
    <link rel="stylesheet" type="text/css"
<!-- Scripts -->
+
          href="https://2015.igem.org/Template:BGU_Israel/css/TUM13_normalize?action=raw&ctype=text/css" />
<script src="http://igembgu.com/wiki/JS/TUM13_jquery-1.10.2.js?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
+
    <link rel="stylesheet" type="text/css"
<script src="http://igembgu.com/wiki/JS/TUM13_slimbox2.js?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
+
          href="https://2015.igem.org/Template:BGU_Israel/css/UM13_reset?action=raw&ctype=text/css" />
<script src="http://igembgu.com/wiki/JS/TUM13_bxslider.js?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
+
    <link rel="stylesheet" type="text/css"
<script src="http://igembgu.com/wiki/JS/TUM13_Script?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
+
          href="https://2015.igem.org/Template:BGU_Israel/css/TUM13_slimbox2?action=raw&ctype=text/css" />
<script src="http://igembgu.com/wiki/JS/TUM13_history.js?action=raw&amp;ctype=text/javascript" type="text/javascript"></script>
+
    <link rel="stylesheet" type="text/css"
 
+
          href="https://2015.igem.org/Template:BGU_Israel/css/TUM13_normalize?action=raw&ctype=text/css" />
 
+
    <link rel="stylesheet" type="text/css"
<!-- Stylesheets -->
+
          href="https://2015.igem.org/Template:BGU_Israel/css/TUM13_bxslider?action=raw&ctype=text/css" />
<link href="http://igembgu.com/wiki/css/TUM13_normalize.css" type="text/css" rel="stylesheet">
+
    <link rel="stylesheet" type="text/css"
<link href="http://igembgu.com/wiki/css/UM13_reset.css" type="text/css" rel="stylesheet">
+
          href="https://2015.igem.org/Template:BGU_Israel/css/TUM13_wiki?action=raw&ctype=text/css" />
<link href="http://igembgu.com/wiki/css/TUM13_slimbox2.css" type="text/css" rel="stylesheet">
+
    <link rel="stylesheet" type="text/css"
<link href="http://igembgu.com/wiki/css/TUM13_normalize.css" type="text/css" rel="stylesheet">
+
          href="https://2015.igem.org/Template:BGU_Israel/css/BGU15_addition?action=raw&ctype=text/css" />
<link href="http://igembgu.com/wiki/css/TUM13_bxslider.css" type="text/css" rel="stylesheet">
+
<link href="http://igembgu.com/wiki/css/TUM13_wiki.css" type="text/css" rel="stylesheet">
+
  
 
</head>
 
</head>
   
+
</html>
   
+
{{BGU_Israel/menu}}
    <body class="mediawiki  ltr ns-0 ns-subject page-Team_BGU_Israel">   
+
<html>
      <div id="content">
+
         
+
        <img src="https://static.igem.org/mediawiki/2015/8/8f/2015igembanner.jpg" height="150px" width="100%">
+
<a name="top" id="top"></a>
+
<h1 class="firstHeading">Team:BGU Israel</h1>
+
<div id="bodyContent">
+
+
<div id="contentSub"></div>
+
<!-- start content -->
+
<p>
+
<div id="header-container">
+
   
+
    <div id="header">
+
        <table style="background-color:transparent ">
+
            <tr>
+
                <td style="width:200px"></td>
+
                <td> <img src="https://static.igem.org/mediawiki/2015/8/83/Igem_bgu_logo.png" height="120px" width="490px"><td>
+
                                                                                                                        <td></td>
+
                                                                                                                   
+
            </tr>
+
        </table>
+
    </div>
+
    <!--
+
        <a href="https://2015.igem.org/Main_Page"><img id="igem-logo" src="https://static.igem.org/mediawiki/2013/9/9c/TUM13_igem-logo.png" /></a>
+
        <a href="http://www.tum.de/en/homepage/"><img id="tum-logo" src="https://static.igem.org/mediawiki/2013/9/9b/TUM13_tum-logo.png" /></a>
+
        <a href="https://2013.igem.org/Team:TU-Munich"><img id="physco-logo" src="https://static.igem.org/mediawiki/2013/c/c4/TUM13_physco-logo-klein.png" /></a>
+
    </div>
+
  
  <!-- Start of menu -->
 
    <div id="menu">
 
        <ul>
 
            <li><a id="home" href="https://2015.igem.org/Team:BGU_Israel">Home</a></li>
 
            <li><a id="A2" href="https://2015.igem.org/Team:BGU_Israel/Team">Team</a>
 
                <!--<ul>  optional
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Members">Members</a></li>
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Sponsors">Sponsors</a></li>
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Collaborations">Collaborations</a></li>
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Gallery">Pictures</a></li>
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Statistics">Timeline</a></li>
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Attributions">Attributions</a></li>
 
                    <li><a href="https://2013.igem.org/Team:BGU_Israel/Team/Judging">Judging</a></li>
 
                </ul> -->
 
            </li>
 
           
 
            <li>Project
 
                            <ul>
 
                                <li><a id="A1" href="https://2015.igem.org/Team:BGU_Israel/Description">Description</a></li>
 
                              <li> <a href="https://2015.igem.org/Team:BGU_Israel/Experiments">Experiments &amp; Protocols</a>  </li>
 
                                <li><a href="https://2015.igem.org/Team:BGU_IsraelResults">Results</></a>  </li>
 
                                <li><a href="https://2015.igem.org/Team:BGU_Israel/Design">Design</a></li>
 
                            </ul>
 
            </li>
 
  
         
 
            <li>Parts
 
            <ul>
 
<li><a href="https://2015.igem.org/Team:BGU_Israel/Parts">Team Parts</a></li>
 
<li><a href="https://2015.igem.org/Team:BGU_Israel/Basic_Part">Basic Parts</a>  </li>
 
<li><a href="https://2015.igem.org/Team:BGU_Israel/Composite_Part">Composite Parts</a></li>
 
<li><a href="https://2015.igem.org/Team:BGU_Israel/Part_Collection">Part Collection</a> </li>
 
</ul>
 
</li>
 
  
<li><a id="A3" href="https://2015.igem.org/Team:BGU_Israel/Notebook">Notebook</a></li>
+
  <body class="mediawiki ltr ns-0 ns-subject page-Team_BGU_Israel">
     
+
    <div id="Div1">
            <li> MORE
+
                <ul>
+
                    <li><a href="https://2015.igem.org/Team:BGU_Israel/Attributions">Attributions</a></li>
+
                  <li> <a href="https://2015.igem.org/Team:BGU_Israel/Collaborations">Collaborations</a></li>
+
                  <li> <a href="https://2015.igem.org/Team:BGU_Israel/Practices">Human practices</a></li>
+
                  <li> <a href="https://2015.igem.org/Team:BGU_Israel/Safety">Safety</a></li>
+
                  <li> <a href="https://2015.igem.org/Team:BGU_Israel/Modeling">Modeling</a></li>
+
                  <!-- <li> <a href="https://2015.igem.org/Team:BGU_Israel/Measurement">MEASUREMENT</a></li>
+
<!-- <a href="https://2015.igem.org/Team:BGU_Israel/Software"><li>SOFTWARE</li></a> -->
+
                  <li> <a href="https://2015.igem.org/Team:BGU_Israel/Entrepreneurship">Entrepreneurship</a></li>
+
                   
+
                </ul>
+
            </li>
+
  
        </ul>
+
  <div id="wikicontent-container">
    </div>
+
              <div id="wikicontent">
    <!-- End of menu -->
+
                <br />
 +
                <br />
  
</div>
 
 
 
 
 
</p><p><br />
 
</p>
 
<div id="wikicontent-container">
 
    <div id="wikicontent">
 
       
 
        <br /><br />
 
  
 
<br />
 
<br />
Line 144: Line 74:
 
<b>dCas9-VP64</b> – dCas9-VP64 was engineered so that it lacks endonuclease activity (“dead” Cas9) and has 4 VP16 activation domains fused to the protein. We designed dCas9-VP64 to be expressed under the control of human TERT promoter. Therefore dCas9-VP64 should be expressed predominantly in cells in which the promoter is highly active, namely – cancer cells (1). When guided to a specific promoter, dCas9-VP64 activates transcription of genes downstream of its binding site (2). dCas9-VP64 was assembled into an expression vector under hTERT promoter.
 
<b>dCas9-VP64</b> – dCas9-VP64 was engineered so that it lacks endonuclease activity (“dead” Cas9) and has 4 VP16 activation domains fused to the protein. We designed dCas9-VP64 to be expressed under the control of human TERT promoter. Therefore dCas9-VP64 should be expressed predominantly in cells in which the promoter is highly active, namely – cancer cells (1). When guided to a specific promoter, dCas9-VP64 activates transcription of genes downstream of its binding site (2). dCas9-VP64 was assembled into an expression vector under hTERT promoter.
 
<br/><br/>
 
<br/><br/>
<b>gRNA</b>- The gRNA (using the scaffold for Staphylococcus pyogenes Cas9) was also assembled into a AAV vector, under the control of human survivin promoter. In order to utilize the cancer specific promoter hyperactivation we used an RGR (Ribozyme gRNA Ribozyme) design. This design allows for gRNAs to be transcribed and processed using RNA polymerase II promoters, since these are the main promoters controlling gene activation (3). The gRNA sequence is used to guide dCas9-VP64 to a specific synthetic promoter.
+
<b>gRNA</b>- the guide RNA is a hundred base-long molecule with a unique two dimensional structure which binds Cas9 and guides it to a dsDNA sequence complementary to 21-22 base pairs on the 5' end of the molecule. The gRNA (using the scaffold sequence for Staphylococcus pyogenes Cas9) was assembled into a AAV vector, under the control of human survivin promoter (3). In order to utilize the cancer specific promoter hyperactivation we used an RGR (Ribozyme gRNA Ribozyme) design. This design allows for gRNAs to be transcribed and processed using RNA polymerase II promoters, since these are the main promoters controlling gene activation (4). The gRNA sequence is used to guide dCas9-VP64 to a specific synthetic promoter
 
<br/><br/>
 
<br/><br/>
<b>Synthetic activation promoter</b>- The third part of the system is an expression AAV cassette with GFP under the control of synthetic promoter (4). The synthetic promoter has 3 complementary sites for the gRNA, which, upon binding of dCas9-VP64 in a tandem, should promote transcription of a downstream gene.  
+
<b>Synthetic activation promoter</b>- The third part of the system is an expression AAV cassette with GFP under the control of synthetic promoter (5). The synthetic promoter has 3 complementary sites for the gRNA, which, upon binding of dCas9-VP64 in a tandem, should promote transcription of a downstream gene.  
 
<br/><br/>
 
<br/><br/>
  
For a proof-of-concept, we utilized GFP as our target gene. The design allows for an expression of any desired protein: 1) to induce cancer cell apoptosis or cell death by using reversed caspase-3, which can lead to apoptosis when expressed in cells, or diphteria toxin A, which can kill a cell (5,6), 2) label the tumor for complete surgical removal by using chromoproteins; and 3) produce a biomarker detectable in the blood or urine, for cancer diagnosis, for example, by using SEAP (Secreted embryonic alkaline phosphatase), which can be excreted out of the cells and its levels monitored easily (7) (Figure 1).
+
For a proof-of-concept, we utilized GFP as our target gene. The design allows for an expression of any desired protein: 1) to induce cancer cell apoptosis or cell death by using reversed caspase-3, which can lead to apoptosis when expressed in cells (6), or diphteria toxin A, which can kill a cell (7), 2) label the tumor for complete surgical removal by using chromoproteins; and 3) produce a biomarker detectable in the blood or urine, for cancer diagnosis, for example, by using SEAP (Secreted embryonic alkaline phosphatase), which can be excreted out of the cells and its levels monitored easily (8) (Figure 1).
 
<br /><br />
 
<br /><br />
 
<table style="margin:0 !important;">
 
<table style="margin:0 !important;">
Line 161: Line 91:
 
</p>
 
</p>
 
<br /><br />
 
<br /><br />
 +
 +
<b>A functional prototype of this design working in human cancer cells is shown <a href="https://2015.igem.org/Team:BGU_Israel/Results#prototype">here.</a></b>
 
    
 
    
 
<h3><i>Design 2: Cancer-specific CRISPR/Cas9-mediated gene knock-out </i></h3><br /><br />
 
<h3><i>Design 2: Cancer-specific CRISPR/Cas9-mediated gene knock-out </i></h3><br /><br />
Line 168: Line 100:
 
  <!--img src="https://static.igem.org/mediawiki/2015/1/18/BGU_Kill2.jpg" height="500px" width="800px" /-->
 
  <!--img src="https://static.igem.org/mediawiki/2015/1/18/BGU_Kill2.jpg" height="500px" width="800px" /-->
 
<br /><br />
 
<br /><br />
 
  
  
Line 175: Line 106:
  
 
The system includes two parts: one AAV expression cassette with the Cas9 gene, and the other with a gRNA designed to target 3 sequence repeats in the second exon of Ubb.<br/><br/>
 
The system includes two parts: one AAV expression cassette with the Cas9 gene, and the other with a gRNA designed to target 3 sequence repeats in the second exon of Ubb.<br/><br/>
<b>Cas9</b> – the Cas9 endonuclease was assembled into an expression vector under hTERT promoter. We utilized Staphylococcus aureus Cas9 version (SaCas9) (8). <br/><br/>
+
<b>Cas9</b> – the Cas9 endonuclease was assembled into an expression vector under hTERT promoter. We utilized Staphylococcus aureus Cas9 version (SaCas9) (9). <br/><br/>
<b>gRNA</b> – the guide RNA is a hundred base-long molecule with a unique two dimensional structure which binds Cas9 and guides it to a dsDNA sequence complementary to 21-22 base pairs on the 5' end of the molecule. The gRNA was also assembled into a AAV vector, under the control of human survivin promoter, using previously described ribozyme design. <br/><br/>
+
<b>gRNA</b> – The gRNA (using the scaffold sequence for Staphylococcus aureus Cas9) was also assembled into a AAV vector, under the control of human survivin promoter, using previously described ribozyme design. <br/><br/>
  
 
When both conditions are met, meaning the system is in a cancer cell in which both promoters are highly active, the SaCas9 is guided by the gRNA to the target DNA, and introduces double strand breaks (DSB) at the target site. This then leads to activation of intrinsic DNA damage repair mechanism - predominantly error-prone non-homologous end joining (NHEJ), which introduces insertion/deletion mutations. This, in turn, can significantly disrupt a coding sequence, eliminating partially or completely a target protein function.
 
When both conditions are met, meaning the system is in a cancer cell in which both promoters are highly active, the SaCas9 is guided by the gRNA to the target DNA, and introduces double strand breaks (DSB) at the target site. This then leads to activation of intrinsic DNA damage repair mechanism - predominantly error-prone non-homologous end joining (NHEJ), which introduces insertion/deletion mutations. This, in turn, can significantly disrupt a coding sequence, eliminating partially or completely a target protein function.
 
<br/><br/>
 
<br/><br/>
For a proof-of-concept of the knock-out system, we chose Ubiquitin B (Ubb) gene which encodes for poly-Ubiquitin, as a target for gRNA-guided SaCas9. Ubiquitin levels are elevated in most, if not all human cancer cells, it is essential to the growth of cancer cells, and the protein product of the gene is thought to help cancer cells adapt to increased stress (9). Ubb emerges as one of the promising targets for cancer therapy. For example, Ubb downregulation by siRNA has shown a high decrease in tumor proliferation and increased apoptosis, both in vitro and in vivo (10).
+
 
 +
For a proof-of-concept of the knock-out system, we chose Ubiquitin B (Ubb) gene which encodes for poly-Ubiquitin, as a target for gRNA-guided SaCas9. Ubiquitin levels are elevated in most, if not all human cancer cells, it is essential to the growth of cancer cells, and the protein product of the gene is thought to help cancer cells adapt to increased stress (10). Ubb emerges as one of the promising targets for cancer therapy. For example, Ubb downregulation by siRNA has shown a high decrease in tumor proliferation and increased apoptosis, both in vitro and in vivo (10).
 
</p>
 
</p>
 
<br /><br />
 
<br /><br />
Line 187: Line 119:
 
        
 
        
 
             <b> <h2> Detailed design and cloning program</h2></b><br />
 
             <b> <h2> Detailed design and cloning program</h2></b><br />
<p>1) Design of “master” template with specific restriction sites for subcloning
+
<p><b>1. Design of “master” template with specific restriction sites for subcloning</b>
 
  <br />
 
  <br />
 
</p>
 
</p>
     <img src="https://static.igem.org/mediawiki/2015/7/72/BGUigem_project_design1.png" ><br /><br /><br /></p>
+
     <img src="https://static.igem.org/mediawiki/2015/7/72/BGUigem_project_design1.png" ><br /><br /><br />
<p>2) Design of Boomerang components.
+
<p><b>2. Design of Boomerang components</b>.
 
<br />
 
<br />
 
     Our basic components include promoters, Cas9 proteins and guide RNAs.  
 
     Our basic components include promoters, Cas9 proteins and guide RNAs.  
Line 198: Line 130:
 
<br /><br />
 
<br /><br />
  
<table style="margin:0 !important;">
+
<table width="800" style="margin:0 !important; text-align:left !important;">
 
   <tbody>
 
   <tbody>
 
     <tr>
 
     <tr>
       <th width="800" colspan="3">
+
       <th colspan="3">
 
         <p dir="LTR">
 
         <p dir="LTR">
 
           <b>Synthesized Components</b>
 
           <b>Synthesized Components</b>
Line 208: Line 140:
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td width="100">
+
       <td width="130">
 
         <b>Name</b>
 
         <b>Name</b>
 
       </td>
 
       </td>
       <td width="400">
+
       <td width="370">
 
         <b>Description</b>
 
         <b>Description</b>
 
       </td>
 
       </td>
Line 226: Line 158:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Sequence from <a href="https://2015.igem.org/wiki/10.1038/nmeth.2600">(8)</a>. Ordered from Addgene.
+
         Sequence from (2). Ordered from Addgene.
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 237: Line 169:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Sequence from <a href="https://2015.igem.org/wiki/10.1038/nature14299">(5)</a> Ordered from Addgene.
+
         Sequence from (9) Ordered from Addgene.
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 248: Line 180:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Sequence from <a href="http://pubs.acs.org/doi/full/10.1021/sb400081r">(9)</a>. Synthesized by IDT.
+
         Sequence from (4). Synthesized by IDT.
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 270: Line 202:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Sequence from <a href="https://2015.igem.org/wiki/10.1038/nature14299">(5).</a>Synthesized by IDT.
+
         Sequence from (9). Synthesized by IDT.
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 281: Line 213:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Synthesized by SyntezzaBioscience
+
         Synthesized by Syntezza Bioscience
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 292: Line 224:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Synthesized by SyntezzaBioscience
+
         Synthesized by Syntezza Bioscience
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 303: Line 235:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Sequence from <a href="http://pubs.acs.org/doi/full/10.1021/sb400081r">(9)</a>. Synthesized by Syntezza Bioscience
+
         Sequence from (5). Synthesized by Syntezza Bioscience
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 314: Line 246:
 
       </td>
 
       </td>
 
       <td>
 
       <td>
         Synthesized by SyntezzaBioscience
+
         Synthesized by Syntezza
 +
Bioscience
 
       </td>
 
       </td>
 
     </tr>
 
     </tr>
Line 320: Line 253:
 
</table>
 
</table>
  
<!-- Map & Sequences -->
+
<!-- Map & Sequences  
 
<table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width=602
 
<table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width=602
 
  style='width:451.45pt;margin-left:5.0pt;border-collapse:collapse;border:none;
 
  style='width:451.45pt;margin-left:5.0pt;border-collapse:collapse;border:none;
Line 596: Line 529:
 
  </tr>
 
  </tr>
 
</table>
 
</table>
       
+
  -->     
     
+
 
</ul>
+
  
  
Line 604: Line 536:
  
 
         <B><p>3. Cloning of “master” into AAV vector</p></B>
 
         <B><p>3. Cloning of “master” into AAV vector</p></B>
         <img src="https://static.igem.org/mediawiki/2015/8/82/MainPlasmid.png" height="610" width="673" >
+
         <img src="https://static.igem.org/mediawiki/2015/8/82/MainPlasmid.png" height="725" width="800" >
 
         <br /><br />
 
         <br /><br />
 
         <b><p>4. Cloning of various Boomerang components into “MASTER-AAV”</p></b>
 
         <b><p>4. Cloning of various Boomerang components into “MASTER-AAV”</p></b>
  
 +
<table width="800" style="margin:0 !important; text-align:left !important;">
 +
  <tbody>
 +
    <tr>
 +
      <th colspan="3">
 +
        <b>Activation System</b>
 +
      </th>
 +
    </tr>
 +
    <tr>
 +
      <td width="230">
 +
        <b>Name</b>
 +
      </td>
 +
      <td width="500">
 +
        <b>Description</b>
 +
      </td>
 +
      <td width="70">
 +
        <b>Map</b>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        phTERT-dCas9-VP64-polyA-pAAV
 +
      </td>
 +
      <td>
 +
        dCas9-VP64 under hTERT promoter. System part.
 +
      </td>
 +
      <td>
 +
        <a href="https://static.igem.org/mediawiki/2015/f/f9/PhTERT-dCas9-VP64-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        CMV-dCas9-VP64-polyA-pAAV
 +
      </td>
 +
      <td>
 +
        dCas9 under CMV promoter. Positive control for phTERT-dCas9-VP64 construct.
 +
      </td>
 +
      <td>
 +
        <a href="https://static.igem.org/mediawiki/2015/4/43/CMV-dCas9-VP64-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        pSurvivin-gMLP-polyA-pAAV
 +
      </td>
 +
      <td>
 +
        Ribozyme-flanked gRNA for the synthetic promoter under Survivin promoter. System part.
 +
      </td>
 +
      <td>
 +
        <a href="https://static.igem.org/mediawiki/2015/a/aa/PSurvivin-gMLP-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        U6-gMLP-pAAV
 +
      </td>
 +
      <td>
 +
        gRNA for the synthetic promoter under human U6 promoter. Positive control for RGR design of gMLP.
 +
      </td>
 +
      <td>
 +
        <a href="https://static.igem.org/mediawiki/2015/4/4d/U6-gMLP-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        pMLPm-eGFP-polyA-pAAV
 +
      </td>
 +
      <td>
 +
        GFP under the synthetic activation promoter. System part.
 +
      </td>
 +
      <td>
 +
        <a href="https://static.igem.org/mediawiki/2015/e/e6/PMLPm-eGFP-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
  </tbody>
 +
</table>
 +
 +
<!--
 
<table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width=659
 
<table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width=659
 
  style='width:494.25pt;margin-left:-15.0pt;border-collapse:collapse;border:
 
  style='width:494.25pt;margin-left:-15.0pt;border-collapse:collapse;border:
Line 830: Line 839:
 
   </td>
 
   </td>
 
  </tr>
 
  </tr>
 +
</table>
 +
-->
 +
<br /><br />
 +
<table width="800" style="margin:0 !important; text-align:left !important;">
 +
  <tbody>
 +
    <tr>
 +
      <th colspan="3">
 +
        <b>Knock-out System</b>
 +
      </th>
 +
    </tr>
 +
    <tr>
 +
      <td width="230">
 +
        <b>Name</b>
 +
      </td>
 +
      <td width="500">
 +
        <b>Description</b>
 +
      </td>
 +
      <td width="70">
 +
        <b>Map</b>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
          phTERT-SaCas9-polyA-pAAV
 +
      </td>
 +
      <td>
 +
          SaCas9 under hTERT promoter. System part.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/b/b0/PhTERT-SaCas9-polyA-pAAV-sequence_%281%29.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
          CMV-SaCas9-polyA-pAAV
 +
      </td>
 +
      <td>
 +
          SaCas9 under CMV. Positive control for phTERT-SaCas9 construct.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/3/35/CMV-SaCas9-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
          pSurvivin-gUBB-polyA-pAAV
 +
      </td>
 +
      <td>
 +
          Ribozyme-flanked gRNA for UBB gene under human Survivin promoter. System part.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/0/06/PSurvivin-gUBB-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
          U6-gUBB-pAAV
 +
      </td>
 +
      <td>
 +
          gRNA for UBB gene under human U6 promoter. Positive control for RGR design of gUBB.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/5/5d/U6-gUBB-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
  </tbody>
 
</table>
 
</table>
  
 +
<br /><br />
  
 +
<table width="800" style="margin:0 !important; text-align:left !important;">
 +
  <tbody>
 +
    <tr>
 +
      <th colspan="3">
 +
        <b>General Controls</b>
 +
      </th>
 +
    </tr>
 +
    <tr>
 +
      <td width="230">
 +
        <b>Name</b>
 +
      </td>
 +
      <td width="500">
 +
        <b>Description</b>
 +
      </td>
 +
      <td width="70">
 +
        <b>Map</b>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        phTERT-eGFP-polyA master-pAAV
 +
      </td>
 +
      <td>
 +
        GFP under hTERT promoter. Validation control for hTERT promoter.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/9/9e/PhTERT-eGFP-polyA-master-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        pSurvivin-mCherry-polyA-pAAV
 +
      </td>
 +
      <td>
 +
        mCherry under human Survivin promoter. Validation control for Survivin promoter.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/a/a2/PSurvivin-mCherry-polyA-pAAV-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
    <tr>
 +
      <td>
 +
        eGFP-AAV
 +
      </td>
 +
      <td>
 +
        eGFP under the control of constitutive CMV promoter. Transfection/transduction control.
 +
      </td>
 +
      <td>
 +
          <a href="https://static.igem.org/mediawiki/2015/3/30/PAAV-GFP-sequence.pdf" target="_blank">Map</a>
 +
      </td>
 +
    </tr>
 +
  </tbody>
 +
</table>
  
<p class=MsoNormal dir=LTR style='line-height:107%'><o:p>&nbsp;</o:p></p>
+
<!--
 
+
<p class=MsoNormal dir=LTR style='line-height:107%'><o:p>&nbsp;</o:p></p>
+
 
+
<p class=MsoNormal dir=LTR style='line-height:107%'><o:p>&nbsp;</o:p></p>
+
 
+
<p class=MsoNormal dir=LTR style='line-height:107%'><o:p>&nbsp;</o:p></p>
+
 
+
 
<div align=left dir=ltr>
 
<div align=left dir=ltr>
  
Line 1,161: Line 1,283:
 
</table>
 
</table>
  
</div>
+
</div>-->
  
  
Line 1,172: Line 1,294:
 
<br />
 
<br />
 
<h4>References</h4>
 
<h4>References</h4>
<p> (<a href="http://www.nature.com/gt/journal/v8/n7/pdf/3301421a.pdf" target="_blank">1</a>) The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters</p>
 
 
 
  
<p> (<a href="http://www.nature.com/nrc/journal/v15/n7/full/nrc3950.html" target="_blank">2</a>)  Applications of the CRISPR–Cas9 system in cancer biology</p>
+
<br />(1) The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Majumdar AS, Hughes DE, Lichtsteiner SP, Wang Z, Lebkowski JS, Vasserot AP. Gene Ther. 2001 Apr;8(7):568-78.
 
+
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/11319624">http://www.ncbi.nlm.nih.gov/pubmed/11319624</a>  
<p> (<a href="http://www.nature.com/nrd/journal/v14/n9/full/nrd4663.html" target="_blank">3</a>) Oncolytic viruses: a new class of immunotherapy drugs</p>
+
 
+
<p> (<a href="http://www.nature.com/cgt/journal/v18/n2/pdf/cgt201066a.pdf" target="_blank">4</a>)  Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter</p>
+
 
+
<p> (<a href="10.1038/nature14299" target="_blank">5</a>) In vivo genome editing using Staphylococcus aureus Cas9. </p>
+
 
+
<p> (<a href="http://onlinelibrary.wiley.com/doi/10.1111/jipb.12152/full">6</a>) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing </p>
+
 
+
<p> (<a href="http://www.nature.com/srep/2013/130911/srep02623/full/srep02623.html">7</a>) DDownregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention </p>
+
 
+
<p> (<a href="10.1038/nmeth.2600">8</a>) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. </p>
+
 
+
<p> (<a href="http://pubs.acs.org/doi/full/10.1021/sb400081r">9</a>) Tunable and Multifunctional Eukaryotic Transcription Factors Based on CRISPR/Cas</p>
+
 
+
<p> (<a href="http://www.jbc.org/content/273/17/10107.full">10</a>) Generation of Constitutively Active Recombinant Caspases-3 and -6 by Rearrangement of Their Subunits</p>
+
 
+
<p>(<a href="http://www.sciencedirect.com/science/article/pii/0092867478900995 ">11</a>) One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell</p>
+
 
+
<p>(<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449504/">12</a>) SEAP expression in transiently transfected mammalian cells grown in serum-free suspension culture </p>
+
  <br /><br /><br />
+
</div>
+
</div>
+
</div>
+
  
 +
<br /><br />(2) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. Nat Methods. 2013 Oct;10(10):973-6. doi: 10.1038/nmeth.2600. Epub 2013 Jul 25.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/23892895">http://www.ncbi.nlm.nih.gov/pubmed/23892895</a>
  
<br /><br /><br />
+
<br /><br />(3) Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Huang R, Zhao Z, Ma X, Li S, Gong R, Kuang A. Cancer Gene Ther. 2011 Feb;18(2):144-52. doi: 10.1038/cgt.2010.66. Epub 2010 Oct 29.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/21037556">http://www.ncbi.nlm.nih.gov/pubmed/21037556</a>
  
<div id="social-footer">
+
<br /><br />(4) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. Gao Y, Zhao Y. J Integr Plant Biol. 2014 Apr;56(4):343-9. doi: 10.1111/jipb.12152. Epub 2014 Mar 6.
<a id="gotop" href="#"></a>
+
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/24373158">http://www.ncbi.nlm.nih.gov/pubmed/24373158</a>
  
 +
<br /><br />(5) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. Farzadfard F, Perli SD, Lu TK. ACS Synth Biol. 2013 Oct 18;2(10):604-13. doi: 10.1021/sb400081r. Epub 2013 Sep 11.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/23977949">http://www.ncbi.nlm.nih.gov/pubmed/23977949</a>
  
 +
<br /><br />(6) Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits. Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T, Alnemri ES. J Biol Chem. 1998 Apr 24;273(17):10107-11.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/9553057">http://www.ncbi.nlm.nih.gov/pubmed/9553057</a>
  
 +
<br /><br />(7) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Yamaizumi M, Mekada E, Uchida T, Okada Y. Cell. 1978 Sep;15(1):245-50.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/699044">http://www.ncbi.nlm.nih.gov/pubmed/699044</a>
  
<div id="follow">
+
<br /><br />(8) SEAP expression in transiently transfected mammalian cells grown in serum-free suspension culture. Schlaeger EJ, Kitas EA, Dorn A. Cytotechnology. 2003 May;42(1):47-55. doi: 10.1023/A:1026125016602.
  <h2>Follow us:</h2>
+
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/19002927">http://www.ncbi.nlm.nih.gov/pubmed/19002927</a>
  <div>
+
    <a id="adress" href="http://igembgu2015hp.wix.com/boomerang" target="blank"></a>
+
    <a id="mail" href="mailto:igembgu2015@gmail.com "></a>
+
    <a id="facebook" href="https://www.facebook.com/iGEMBGU" target="blank"></a>
+
    <a id="twitter" href="https://twitter.com/BGU_iGEM" target="blank"></a>
+
    <a id="youtube" href="http://player.vimeo.com/video/110058399" target="blank"></a>
+
  </div>
+
</div>
+
  
 +
<br /><br />(9) In vivo genome editing using Staphylococcus aureus Cas9. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/25830891">http://www.ncbi.nlm.nih.gov/pubmed/25830891</a>
  
 +
<br /><br />(10) Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Oh C, Park S, Lee EK, Yoo YJ. Sci Rep. 2013;3:2623. doi: 10.1038/srep02623.
 +
<br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/24022007">http://www.ncbi.nlm.nih.gov/pubmed/24022007</a>
  
 +
  <br /><br /><br />
 +
     
 +
</ul>
  
  <div id="Div2">
 
  <h2>Address:</h2>
 
  <p> <br />
 
  <p> <br />
 
  
</div>
+
<!-- finish HERE ----------------------------------------------------------------------------------------------->
  
</div>
+
              </div>
 +
            </div>
 +
          </div>
 +
      </div>
 +
  <div class="visualClear"></div>
 +
  <br /><br /><br /><br /><br /><br /><br /><br />
 +
</html>
  
 
+
{{BGU_Israel/footer}}
</p>
+
 
+
 
+
<!-- Saved in parser cache with key 2013_igem_org:pcache:idhash:107-0!1!0!!en!2!edit=0 and timestamp 20150808061127 -->
+
<div class="printfooter"></div>
+
<div id="catlinks"><div id='Div1' class='catlinks catlinks-allhidden'></div></div> <!-- end content -->
+
<div class="visualClear"></div>
+
</div>
+
    </div>
+
<!-- PAGE FOOTER -- ITEMS FROM COLUMN ! HAVE BEEN MOVED HERE  -- RDR  -->
+
<div class="visualClear"></div>
+
    <div id='footer-box' class='noprint'>
+
        <div id="footer">
+
                  <div id="f-copyrightico"><a href="http://creativecommons.org/licenses/by/3.0/"><img src="http://i.creativecommons.org/l/by/3.0/88x31.png" alt="Attribution 3.0 Unported" width="88" height="31" /></a></div>    
+
            <ul id="f-list">
+
+
 
+
  <!-- Recentchanges is not handles well DEBUG -->
+
+
 
+
            </ul>
+
        </div> <!-- close footer -->
+
       
+
    </div> <!-- close footer-box -->
+
+
<script>    if (window.runOnloadHook) runOnloadHook();</script>
+
<!-- Served in 0.149 secs. --></body>
+
 
+
 
+
</p>
+
<!-- Saved in parser cache with key 2015_igem_org:pcache:idhash:1062-0!1!0!!en!2!edit=0 and timestamp 20150823083101 -->
+
<div class="printfooter">
+
Retrieved from "<a href="https://2015.igem.org/Team:BGU_Israel/Team">https://2015.igem.org/Team:BGU_Israel/Team</a>"</div>
+
<div class="visualClear"></div>
+
</div>
+
    </div>
+
<!-- PAGE FOOTER -- ITEMS FROM COLUMN ! HAVE BEEN MOVED HERE  -- RDR  -->
+
<div class="visualClear"></div>
+
+
<script>    if (window.runOnloadHook) runOnloadHook();</script>
+
</div>
+
</body>
+
 
+
</html>
+

Latest revision as of 15:54, 18 September 2015

Team:BGU Israel




    Detailed design



    Design 1: Cancer-specific CRISPR/Cas9-mediated activation of the gene of interest



    This design utilizes modified CRISPR-Cas9 system for transcriptional activation of any gene of interest.



    The system includes 3 parts: one AAV expression cassette with the activator Cas9 (dCas9-VP64), the second with a gRNA designed to guide activator Cas9 to synthetic promoter, and the third with the gene of interest (modelled by GFP) under the control of synthetic activation promoter.
    dCas9-VP64 – dCas9-VP64 was engineered so that it lacks endonuclease activity (“dead” Cas9) and has 4 VP16 activation domains fused to the protein. We designed dCas9-VP64 to be expressed under the control of human TERT promoter. Therefore dCas9-VP64 should be expressed predominantly in cells in which the promoter is highly active, namely – cancer cells (1). When guided to a specific promoter, dCas9-VP64 activates transcription of genes downstream of its binding site (2). dCas9-VP64 was assembled into an expression vector under hTERT promoter.

    gRNA- the guide RNA is a hundred base-long molecule with a unique two dimensional structure which binds Cas9 and guides it to a dsDNA sequence complementary to 21-22 base pairs on the 5' end of the molecule. The gRNA (using the scaffold sequence for Staphylococcus pyogenes Cas9) was assembled into a AAV vector, under the control of human survivin promoter (3). In order to utilize the cancer specific promoter hyperactivation we used an RGR (Ribozyme gRNA Ribozyme) design. This design allows for gRNAs to be transcribed and processed using RNA polymerase II promoters, since these are the main promoters controlling gene activation (4). The gRNA sequence is used to guide dCas9-VP64 to a specific synthetic promoter

    Synthetic activation promoter- The third part of the system is an expression AAV cassette with GFP under the control of synthetic promoter (5). The synthetic promoter has 3 complementary sites for the gRNA, which, upon binding of dCas9-VP64 in a tandem, should promote transcription of a downstream gene.

    For a proof-of-concept, we utilized GFP as our target gene. The design allows for an expression of any desired protein: 1) to induce cancer cell apoptosis or cell death by using reversed caspase-3, which can lead to apoptosis when expressed in cells (6), or diphteria toxin A, which can kill a cell (7), 2) label the tumor for complete surgical removal by using chromoproteins; and 3) produce a biomarker detectable in the blood or urine, for cancer diagnosis, for example, by using SEAP (Secreted embryonic alkaline phosphatase), which can be excreted out of the cells and its levels monitored easily (8) (Figure 1).

    Figure 1. Possible applications of cancer-specific CRISPR-mediated gene activation
    Smiley face



    A functional prototype of this design working in human cancer cells is shown here.

    Design 2: Cancer-specific CRISPR/Cas9-mediated gene knock-out



    This design utilizes “classical” CRISPR-Cas9 system for knock-out of a cancer-essential gene.




    The system includes two parts: one AAV expression cassette with the Cas9 gene, and the other with a gRNA designed to target 3 sequence repeats in the second exon of Ubb.

    Cas9 – the Cas9 endonuclease was assembled into an expression vector under hTERT promoter. We utilized Staphylococcus aureus Cas9 version (SaCas9) (9).

    gRNA – The gRNA (using the scaffold sequence for Staphylococcus aureus Cas9) was also assembled into a AAV vector, under the control of human survivin promoter, using previously described ribozyme design.

    When both conditions are met, meaning the system is in a cancer cell in which both promoters are highly active, the SaCas9 is guided by the gRNA to the target DNA, and introduces double strand breaks (DSB) at the target site. This then leads to activation of intrinsic DNA damage repair mechanism - predominantly error-prone non-homologous end joining (NHEJ), which introduces insertion/deletion mutations. This, in turn, can significantly disrupt a coding sequence, eliminating partially or completely a target protein function.

    For a proof-of-concept of the knock-out system, we chose Ubiquitin B (Ubb) gene which encodes for poly-Ubiquitin, as a target for gRNA-guided SaCas9. Ubiquitin levels are elevated in most, if not all human cancer cells, it is essential to the growth of cancer cells, and the protein product of the gene is thought to help cancer cells adapt to increased stress (10). Ubb emerges as one of the promising targets for cancer therapy. For example, Ubb downregulation by siRNA has shown a high decrease in tumor proliferation and increased apoptosis, both in vitro and in vivo (10).



    Detailed design and cloning program


    1. Design of “master” template with specific restriction sites for subcloning




    2. Design of Boomerang components.
    Our basic components include promoters, Cas9 proteins and guide RNAs.



    Synthesized Components

    Name Description Source
    dCas9-VP64 Activator Cas9 for transcriptional activation of genes Sequence from (2). Ordered from Addgene.
    SaCas9 "Classical" Cas9 endonuclease for knock-out of target genes Sequence from (9) Ordered from Addgene.
    gMLP Ribozyme-flanked guide RNA leading dCas9-VP64 to the synthetic promoter Sequence from (4). Synthesized by IDT.
    gUBB Ribozyme-flanked guide RNA leading SaCas9 to UBB gene (exon 2) Designed in Benchling. Synthesized by IDT.
    U6 promoter RNA polymerase III promoter, positive control for RGR design Sequence from (9). Synthesized by IDT.
    pSurvivin Promoter for human survivin gene Synthesized by Syntezza Bioscience
    phTERT Promoter for human TERT gene Synthesized by Syntezza Bioscience
    pMLPm Synthetic activation promoter Sequence from (5). Synthesized by Syntezza Bioscience
    hTERT eGFP polyA - MASTER Master template. Cloned into delivery vector as a cloning template for all other inserts. Synthesized by Syntezza Bioscience

    3. Cloning of “master” into AAV vector



    4. Cloning of various Boomerang components into “MASTER-AAV”

    Activation System
    Name Description Map
    phTERT-dCas9-VP64-polyA-pAAV dCas9-VP64 under hTERT promoter. System part. Map
    CMV-dCas9-VP64-polyA-pAAV dCas9 under CMV promoter. Positive control for phTERT-dCas9-VP64 construct. Map
    pSurvivin-gMLP-polyA-pAAV Ribozyme-flanked gRNA for the synthetic promoter under Survivin promoter. System part. Map
    U6-gMLP-pAAV gRNA for the synthetic promoter under human U6 promoter. Positive control for RGR design of gMLP. Map
    pMLPm-eGFP-polyA-pAAV GFP under the synthetic activation promoter. System part. Map


    Knock-out System
    Name Description Map
    phTERT-SaCas9-polyA-pAAV SaCas9 under hTERT promoter. System part. Map
    CMV-SaCas9-polyA-pAAV SaCas9 under CMV. Positive control for phTERT-SaCas9 construct. Map
    pSurvivin-gUBB-polyA-pAAV Ribozyme-flanked gRNA for UBB gene under human Survivin promoter. System part. Map
    U6-gUBB-pAAV gRNA for UBB gene under human U6 promoter. Positive control for RGR design of gUBB. Map


    General Controls
    Name Description Map
    phTERT-eGFP-polyA master-pAAV GFP under hTERT promoter. Validation control for hTERT promoter. Map
    pSurvivin-mCherry-polyA-pAAV mCherry under human Survivin promoter. Validation control for Survivin promoter. Map
    eGFP-AAV eGFP under the control of constitutive CMV promoter. Transfection/transduction control. Map

    References


    (1) The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Majumdar AS, Hughes DE, Lichtsteiner SP, Wang Z, Lebkowski JS, Vasserot AP. Gene Ther. 2001 Apr;8(7):568-78.
    http://www.ncbi.nlm.nih.gov/pubmed/11319624

    (2) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. Nat Methods. 2013 Oct;10(10):973-6. doi: 10.1038/nmeth.2600. Epub 2013 Jul 25.
    http://www.ncbi.nlm.nih.gov/pubmed/23892895

    (3) Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Huang R, Zhao Z, Ma X, Li S, Gong R, Kuang A. Cancer Gene Ther. 2011 Feb;18(2):144-52. doi: 10.1038/cgt.2010.66. Epub 2010 Oct 29.
    http://www.ncbi.nlm.nih.gov/pubmed/21037556

    (4) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. Gao Y, Zhao Y. J Integr Plant Biol. 2014 Apr;56(4):343-9. doi: 10.1111/jipb.12152. Epub 2014 Mar 6.
    http://www.ncbi.nlm.nih.gov/pubmed/24373158

    (5) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. Farzadfard F, Perli SD, Lu TK. ACS Synth Biol. 2013 Oct 18;2(10):604-13. doi: 10.1021/sb400081r. Epub 2013 Sep 11.
    http://www.ncbi.nlm.nih.gov/pubmed/23977949

    (6) Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits. Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T, Alnemri ES. J Biol Chem. 1998 Apr 24;273(17):10107-11.
    http://www.ncbi.nlm.nih.gov/pubmed/9553057

    (7) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Yamaizumi M, Mekada E, Uchida T, Okada Y. Cell. 1978 Sep;15(1):245-50.
    http://www.ncbi.nlm.nih.gov/pubmed/699044

    (8) SEAP expression in transiently transfected mammalian cells grown in serum-free suspension culture. Schlaeger EJ, Kitas EA, Dorn A. Cytotechnology. 2003 May;42(1):47-55. doi: 10.1023/A:1026125016602.
    http://www.ncbi.nlm.nih.gov/pubmed/19002927

    (9) In vivo genome editing using Staphylococcus aureus Cas9. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
    http://www.ncbi.nlm.nih.gov/pubmed/25830891

    (10) Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Oh C, Park S, Lee EK, Yoo YJ. Sci Rep. 2013;3:2623. doi: 10.1038/srep02623.
    http://www.ncbi.nlm.nih.gov/pubmed/24022007