Difference between revisions of "Team:NYU Shanghai/Protocols"

 
(103 intermediate revisions by 3 users not shown)
Line 29: Line 29:
 
     color: white;
 
     color: white;
 
     margin: 0px;
 
     margin: 0px;
     font-size: 20px;   
+
     font-size: 18px;   
 
     text-align: left;
 
     text-align: left;
 
     line-height: 110%;
 
     line-height: 110%;
}
+
     word-spacing: 2.5px;
  table {
+
     letter-spacing: 0.5px;
     font-family: "helveticaNL";
+
    color: white;
+
     font-size:15px;
+
 
}
 
}
 
   .column {
 
   .column {
Line 56: Line 53:
 
   #sponsors a:hover {
 
   #sponsors a:hover {
 
     color: #d66;
 
     color: #d66;
 +
  }
 +
  #calculations a:hover {
 +
    color: #d66;
 +
  }
 +
  #Plate li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #SOC li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #transform li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #mp li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #rd li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #ligate li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #gel li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #gelex li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #PCR li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #PCRclean li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #luc li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #chromo li {
 +
    text-decoration: none;
 +
    font-family: "helveticaNL";
 +
  }
 +
  #overview a {
 +
    text-decoration: none;
 +
    color: #6db;
 +
  }
 +
  #calculations a {
 +
    text-decoration: none;
 +
    color: white;
 
   }
 
   }
 
   #ligate a {
 
   #ligate a {
Line 62: Line 118:
 
   }
 
   }
 
   #rd a {
 
   #rd a {
 +
    font-family: "helveticaNL";
 +
    text-decoration: none;
 +
    color: #6db;
 +
  }
 +
  #PCR a {
 +
    font-family: "helveticaNL";
 +
    text-decoration: none;
 +
    color: #6db;
 +
  }
 +
  #PCRclean a {
 
     font-family: "helveticaNL";
 
     font-family: "helveticaNL";
 
     text-decoration: none;
 
     text-decoration: none;
Line 73: Line 139:
 
     color: white;
 
     color: white;
 
     border-color: white;
 
     border-color: white;
     margin-bottom: 1em;
+
     margin-bottom: 2em;
 +
    font-family: "helveticaNL";
 +
    font-size:15px; 
 +
    border-collapse: collapse;
 +
    padding:3px;
 +
  }
 +
  table, td, th {
 +
    border: 1px solid white;
 +
  }
 +
  th, td {
 +
    padding: 5px;
 
   }
 
   }
 
</style>
 
</style>
Line 227: Line 303:
 
<div id="overview">
 
<div id="overview">
 
   <h3>Protocols</h3>
 
   <h3>Protocols</h3>
  <h6>We built our constructs from digests and ligations of pre-made biobrick parts. Our general conclusion is that 3A assembly is generally inefficient, and an insufficient method for adding small parts (such as a terminator) to a larger construction within pSB1C3. We learned that ratios were extremely important in the process of 3A Assembly, and we made a summary sheet of the equations we used in pre-digest and pre-ligation that accounts for digest dilution and amount needed to ensure results are seen on a gel, not just ligation ratios. We wished we used gibson assembly. </h6>
+
  <p style="font-size: 17px">We built our constructs from pre-made biobrick parts. Our overall conclusion is that 3A assembly is generally inefficient, and an insufficient method for adding small parts (such as a terminator) to a larger construction within pSB1C3. We learned that ratios were extremely important in the process of 3A Assembly, and we made a <a href="https://static.igem.org/mediawiki/2015/c/c0/NYU_Shanghai_3AAssemblyNumbers.pdf">summary sheet</a> of the equations we used in pre-digest and pre-ligation that accounts for digest dilution and amount needed to ensure results are seen on a gel, not just ligation ratios. We wished we used gibson assembly. </p>
 
<br>
 
<br>
 +
</div>
 +
<div id="makingColor">
 +
  <h4>Making Color</h4>
 +
 +
<div id="luc" class="collapsed">
 +
<h5 style="display:inline-block" onclick="expandluc()"><span class="noselect">Luciferase</span></h5>
 +
<div id="lucText" style="display:none">
 +
  <br>
 +
  <p><img width="800" src="https://static.igem.org/mediawiki/2015/1/12/NYU_Shanghai_Luciferase_Protein.png">
 +
  <br>
 +
    Overview
 +
    <ol>
 +
      <li>Luciferin substrate must be added.</li>
 +
      <li>D-Luciferin is too large of a chemical to cross the plasma membrane of E. Coli so cell lysis is required to extract luciferase.</li>
 +
      <li>After cell lysis, the reagent solution can be added to the lysis buffer. Light should be emitted within 5 to 10 seconds of adding the reagent solution.</li>
 +
      <li>The luciferase/luciferin reaction at 22.5 ºC theoretically offers the greatest light intensity.</li>
 +
      <li>Solutions of D-Luciferin should be aliquotted and stored in darkness at -80 ºC</li>
 +
      <li>We were only able to see the color in a very dark room.</li>
 +
    </ol>
 +
    </p>
 +
    <p>
 +
    <br>Materials
 +
      <li>D-Luciferin free acid</li>
 +
      <li>ATP</li>
 +
      <li>MgSO4 &#xB7; 7H2O</li>
 +
      <li>1M HEPES Buffer</li>
 +
      <li>Lysozyme</li>
 +
      <li>10 mM Tris-HCl</li>
 +
    </p>
 +
    <p>
 +
    <br>Lysis Buffer
 +
    <br>For E. coli cell lysis, use a freshly prepared lysozyme solution (10 mg/ml) in 10 mM Tris-HCl, pH 8.0.
 +
    </p>
 +
    <p>
 +
    <br>Reagent Solution
 +
    <br>Prepare using ATP free water. Combine 1 mM luciferin or luciferin salt, 3 mM ATP and 15 mM MgSO4 in 30mM HEPES buffer, pH 7.8.  Store substrate solution at -20ºC in polypropylene or glass.
 +
    </p>
 +
    <p>
 +
    <br>Preparing 1mM D-Luciferin
 +
    <br>Directions for a 5 mg sample: Dissolve 0.034 gr dithiothreitol in 22 mL of QH2O. Add 0.2 mL of this DTT solution to the 5 mg d-luciferin. Add 4μl of 10M NaOH to dissolve the luciferin. Dilute this into the remaining 21.8 mL of DTT solution and store as aliquots at - 80 ºC in darkness until use.
 +
    </p>
 +
    <p>
 +
    <br>Procedure<br>
 +
    Bacterial lysis:
 +
    <ol>
 +
      <li>After 12-18 hours of inoculation of bacteria expressing luciferase plasmid, pipette 2 mL of cell culture into a clean 2 mL tube. Centrifuge at 10,000 rpm for 1 minute. Pour out liquid into a collection beaker. Continue this process until all of the cell culture (in the inoculation tube) is gone.</li>
 +
      <li>Resuspend the pellets in 350 ml of STET buffer (10 mM Tris-HCl with 1 mM EDTA)</li>
 +
      <li>Add 25μl - 30μl of lysozyme buffer to the resuspended pellet.</li>
 +
      <li>Mix by vortexing for 3 seconds.</li>
 +
      <li>Incubate for 2 hours at room temperature.</li>
 +
      <li>If the reagent is not added immediately, store the lysed bacteria in the -20 ºC freezer until use.</li>
 +
    </ol>
 +
    </p>
 +
    <p>
 +
    Addition of Reagent Solution:
 +
    <ol>
 +
      <li>Following the above instructions, prepare a 1mM sample of D-Luciferin.</li>
 +
      <li>Following the above recipe, prepare the reagent solution.</li>
 +
      <li>In a dark room, add about 250-350μl of reagent solution to each sample of lysis product.</li>
 +
      <li>Light should be emitted within two-three seconds.</li>
 +
    </ol>
 +
    </p>
 +
    <p>
 +
    <br>Example Calculations<br>
 +
    Lysis Buffer (Desired Total Volume: 15mL)<br>
 +
    <table border="1">
 +
      <tr>
 +
        <td><font color="#d66">Chemical Name</font></td>
 +
        <td>Tris-HCl</td>
 +
        <td>EDTA</td>
 +
        <td>NaCl</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Molecular Weight</font></td>
 +
        <td>N/A</td>
 +
        <td>292.23 g/mol</td>
 +
        <td>58.44 g/mol</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Molarity Desired</font></td>
 +
        <td>10 mM</td>
 +
        <td>1mM</td>
 +
        <td>0.1M</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Calculation</font></td>
 +
        <td>Dilute 1M Tris-HCl:</td>
 +
        <td> </td>
 +
        <td> </td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Final Amount</font></td>
 +
        <td>150μl (+14.85 mL ddH2O)</td>
 +
        <td>0.00438 g</td>
 +
        <td>0.08766 g</td>
 +
      </tr>
 +
    </table>
 +
    </p>
 +
    <p>
 +
    Lysozyme Solution (Desired Total Volume: 15mL)<br>
 +
    <table border="1">
 +
      <tr>
 +
        <td><font color="#d66">Lysozyme Solubility</font> </td>
 +
        <td>10 mg lysozyme in 1 mL of 10 mM Tris-HCl</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Desired Amount of Lysozyme Solution to Make</font></td>
 +
        <td>15 mL</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Amount of Lysozyme Needed</font></td>
 +
        <td>10 mg x 15 = <b>150 mg</b></td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Amount of 10 mM Tris-HCl Needed</font> </td>
 +
        <td><b>15 mL</b></td>
 +
      </tr>
 +
    </table>
 +
    </p>
 +
    <p>
 +
    Reagent Solution (Desired total volume: 22 mL)<br>
 +
    <table border="1">
 +
      <tr>
 +
        <td><font color="#d66">Chemical Name</font></td>
 +
        <td>ATP disodium salt trihydrate</td>
 +
        <td>MgSO4•7H2O</td>
 +
        <td>HEPES Buffer</td>
 +
        <td>D-Luciferin free acid</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Molecular Weight</font></td>
 +
        <td>605.24 g/mol</td>
 +
        <td>246.5 g/mol</td>
 +
        <td>238.3 g/mol</td>
 +
        <td>280.33 g/mol</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Molarity Desired</font></td>
 +
        <td>3 mM</td>
 +
        <td>15 mM</td>
 +
        <td>30 mM</td>
 +
        <td>1 mM</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Calculation</font></td>
 +
        <td> </td>
 +
        <td> </td>
 +
        <td> </td>
 +
        <td>Use the 1 mM stock solution created earlier</td>
 +
      </tr>
 +
      <tr>
 +
        <td><font color="#d66">Final Amount</font></td>
 +
        <td>0.039945 g</td>
 +
        <td>0.081345 g</td>
 +
        <td>0.1573 g</td>
 +
        <td>22 mL</td>
 +
      </tr>
 +
    </table>
 +
    </p>
 +
    <p>
 +
    Controls
 +
    <li>No arabinose added during inoculation</li>
 +
    <li>Use bacteria without luciferase plasmid and go through steps to induce color</li>
 +
    </p>
 +
    </p>
 +
  </div>
 +
</div>
 +
 +
<div id="chromo" class="collapsed">
 +
<h5 style="display:inline-block" onclick="expandchromo()"><span class="noselect">Chromoproteins</span></h5> 
 +
<br>
 +
<div id="chromoText" style="display:none">
 +
    <p>
 +
    <h6><font color="#d66">Building our Construct: from biobrick parts in the kit</font></h6>
 +
    <p>Note: If using construct with pBAD promoter, DO NOT USE SOC MEDIA. Glucose inhibits the uptake of arabinose, and will inhibit promoter induction.
 +
    <br>Note: We should have used PCR to amplify linearized backbone.
 +
    <br>Note: Always use gel electrophoresis to check digest results.</p>
 +
    <br><img src="https://static.igem.org/mediawiki/2015/d/df/NYU_Shanghai_Chromo_Procedure.png" width="800">
 +
    <br><br><br>
 +
    <h6><font color="#d66">Building our Construct: from IDT gBlocks</font></h6>
 +
    <p>Note: We recommend adding a reporter gene to the construct.</p>
 +
    <br><img src="https://static.igem.org/mediawiki/2015/7/71/NYU_Shanghai_IDTprocedure.png" width="550">
 +
    <br><br><br>
 +
    <h6><font color="#d66">Expressing XJTLU's Construct</font></h6>
 +
    <br><img src="https://static.igem.org/mediawiki/2015/thumb/9/9a/NYU_Shanghai_Chromo_Procedure_2.png/573px-NYU_Shanghai_Chromo_Procedure_2.png">
 +
    </p>
 +
</div>
 +
</div>
 
</div>
 
</div>
  
Line 240: Line 504:
 
   <p>
 
   <p>
 
     <ol>
 
     <ol>
       <li>Calculate total amount of volume of LB agar you would need to use
+
       <li>Calculate total amount of volume of LB agar you would need to use. You need about 25mL for every 10cm plate and 10mL for every 6cm plate.</li>
        <ul>
+
          <li>You need about 25mL for every 10cm plate and 10mL for every 6cm plate. (e.g. To make 20 x 10cm plates, you need 500mL of LB.)</li>
+
 
         </ul>
 
         </ul>
 
       </li>
 
       </li>
 
       <li>For every 100mL of LB agar needed, measure out 4g of LB Agar Powder.  
 
       <li>For every 100mL of LB agar needed, measure out 4g of LB Agar Powder.  
        <ul>
 
          <li>e.g. if you were to make 500mL of LB, you need 20g of LB Agar Powder</li>
 
        </ul>
 
 
       </li>
 
       </li>
       <li>Put the agar powder in a flask
+
       <li>Put the agar powder in a flask. Use a much bigger flask to prevent overflow when autoclaiving. </li>
        <ul>
+
          <li>Note: Use a much bigger flask to prevent overflow when autoclaiving. </li>
+
          <li>e.g. If  you are making 500mL of LB, use a 750mL or 1L flask.</li>
+
        </ul>
+
 
       </li>
 
       </li>
       <li>Put deionized water into the flask up to the desired volume.  
+
       <li>Put deionized water into the flask up to the desired volume. <strong>Do not mix.</strong> LB Agar is not supposed to dissolve in room temperature. If you mix the powder it will get stuck on the walls of the flask</li>
        <ul>
+
          <li>Note: <strong>Do not mix.</strong> LB Agar is not supposed to dissolve in room temperature. If you mix the powder it will get stuck on the walls of the flask</li>
+
        </ul>
+
 
       </li>
 
       </li>
 
       <li>Autoclave. </li>
 
       <li>Autoclave. </li>
       <li>After autoclave, <b>move to the hood</b>. Let the LB agar cool until it’s less than 60ºC or until you can touch the flask. While waiting, you can start labeling the plates.</li>
+
       <li>After autoclave, move to the hood. Let the LB agar cool until it’s less than 60ºC or until you can touch the flask. While waiting, you can start labeling the plates. <strong>DO NOT LET THE AGAR SOLIDIFY</strong></li>
 
       <li>Insert any antibiotics/sugars needed. If you are not sure about the ratio, you can follow this simple example:
 
       <li>Insert any antibiotics/sugars needed. If you are not sure about the ratio, you can follow this simple example:
 
       <p style="text-align: center;"><b>50mL LB + 500µL Arabinose* + 50µL Ampicillin**</b><span style="font-size: 10;"><br><i>
 
       <p style="text-align: center;"><b>50mL LB + 500µL Arabinose* + 50µL Ampicillin**</b><span style="font-size: 10;"><br><i>
Line 282: Line 534:
 
  <br>
 
  <br>
 
  <div id="LBText" style="display:none">
 
  <div id="LBText" style="display:none">
     <table border="1">
+
     <table>
 
     <tr style="text-align: center; font-weight: bold;">
 
     <tr style="text-align: center; font-weight: bold;">
       <td>Total Amount of Reagent:</td>
+
       <td>Total Amount of Reagent</td>
       <td>100 mL</td>
+
       <td>100mL</td>
       <td>250 mL</td>
+
       <td>250mL</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td>Deionized Water</td>
 
       <td>Deionized Water</td>
       <td>100 mL</td>
+
       <td>100mL</td>
       <td>250 mL</td>
+
       <td>250mL</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td>Yeast</td>
 
       <td>Yeast</td>
       <td>1 g</td>
+
       <td>1g</td>
       <td>2.5 g</td>
+
       <td>2.5g</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td>Tryptone</td>
 
       <td>Tryptone</td>
       <td>0.5 g</td>
+
       <td>0.5g</td>
       <td>1.25 g</td>
+
       <td>1.25g</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td>NaCl</td>
 
       <td>NaCl</td>
       <td>1 g</td>
+
       <td>1g</td>
       <td>2.5 g</td>
+
       <td>2.5g</td>
 
     </tr>
 
     </tr>
 
   </table>
 
   </table>
Line 316: Line 568:
 
  <br>
 
  <br>
 
  <div id="SOCText" style="display:none">
 
  <div id="SOCText" style="display:none">
 +
  <p>
 
     Materials
 
     Materials
    <ul>
 
 
     <li>0.5% (w/v) yeast extract</li>
 
     <li>0.5% (w/v) yeast extract</li>
 
     <li>2% (w/v) tryptone</li>
 
     <li>2% (w/v) tryptone</li>
Line 323: Line 575:
 
     <li>2.5 mM KCl</li>
 
     <li>2.5 mM KCl</li>
 
     <li>20 mM MgSO4</li>
 
     <li>20 mM MgSO4</li>
   </ul><br><br>Per liter:<ul>
+
   <br><br>Per liter:
 
     <li>5 g yeast extract</li>
 
     <li>5 g yeast extract</li>
 
     <li>20 g tryptone</li>
 
     <li>20 g tryptone</li>
Line 329: Line 581:
 
     <li>0.186 g KCl</li>
 
     <li>0.186 g KCl</li>
 
     <li>2.4 g MgSO4</li>
 
     <li>2.4 g MgSO4</li>
   </ul><br><br>
+
   <br><br>
 +
  </p>
 
   <p><em>Note:</em> Some formulations of SOB use 10 mM MgCl2 and 10 mM MgSO4 instead of 20 mM MgSO4.
 
   <p><em>Note:</em> Some formulations of SOB use 10 mM MgCl2 and 10 mM MgSO4 instead of 20 mM MgSO4.
 
SOB medium is also available dry premixed from Difco, 0443-17.<br>Adjust to pH 7.5 prior to use. This requires approximately 25 ml of 1M NaOH per liter.<br><br><b>15/10 medium</b><br><br>Growth of competent TOP10 cells in Example 2 of the Bloom05 patent is performed in 15/10 broth, which is similar to SOB:</p>
 
SOB medium is also available dry premixed from Difco, 0443-17.<br>Adjust to pH 7.5 prior to use. This requires approximately 25 ml of 1M NaOH per liter.<br><br><b>15/10 medium</b><br><br>Growth of competent TOP10 cells in Example 2 of the Bloom05 patent is performed in 15/10 broth, which is similar to SOB:</p>
<ul>
 
 
   <li>1.5% yeast extract</li>
 
   <li>1.5% yeast extract</li>
 
   <li>1% Bacto-Tryptone</li>
 
   <li>1% Bacto-Tryptone</li>
Line 339: Line 591:
 
   <li>10 mM MgCl2</li>
 
   <li>10 mM MgCl2</li>
 
   <li>10 mM MgSO4</li>
 
   <li>10 mM MgSO4</li>
</ul>
 
 
<br>
 
<br>
 
   <table border="1">
 
   <table border="1">
Line 385: Line 636:
 
     </tr>
 
     </tr>
 
   </table>
 
   </table>
</div>
 
</div>
 
</div>
 
 
<div id="makingColor">
 
  <h4>Making Color</h4>
 
 
<div id="luc" class="collapsed">
 
<h5 style="display:inline-block" onclick="expandluc()"><span class="noselect">Luciferase</span></h5> 
 
<br>
 
<div id="lucText" style="display:none">
 
    <p>
 
    <b>General Overview:</b>
 
    <ol>
 
      <li>D-Luciferin is too large of a chemical to cross the plasma membrane of e. Coli so cell lysis is required to extract luciferase.</li>
 
      <li>After cell lysis, the reagent solution can be added to the lysis buffer. Light should be emitted within 5 to 10 seconds of adding the reagent solution.</li>
 
      <li>The luciferase/luciferin reaction at 22.5 ºC theoretically offers the greatest light intensity.</li>
 
      <li>Solutions of D-Luciferin should be aliquotted and stored in darkness at -80 ºC</li>
 
    </ol>
 
    <b>Materials:</b>
 
    <ul>
 
      <li>D-Luciferin free acid</li>
 
      <li>ATP</li>
 
      <li>MgSO4 &#xB7; 7H2O</li>
 
      <li>1M HEPES Buffer</li>
 
      <li>Lysozyme</li>
 
      <li>10 mM Tris-HCl</li>
 
    </ul>
 
    <b>Lysis Buffer:</b>
 
    <p>For E. coli cell lysis, use a freshly prepared lysozyme solution (10 mg/ml) in 10 mM Tris-HCl, pH 8.0.</p>
 
    <b>Reagent Solution:</b>
 
    <p>Prepare using ATP free water. Combine 1 mM luciferin or luciferin salt, 3 mM ATP and 15 mM MgSO4 in 30mM HEPES buffer, pH 7.8.  Store substrate solution at -20ºC in polypropylene or glass.</p>
 
    <b>Preparing 1mM D-Luciferin:</b>
 
    <p>Directions for a 5 mg sample: Dissolve 0.034 gr dithiothreitol in 22 mL of QH2O. Add 0.2 mL of this DTT solution to the 5 mg d-luciferin. Add 4 uL of 10M NaOH to dissolve the luciferin. Dilute this into the remaining 21.8 mL of DTT solution and store as aliquots at - 80 ºC in darkness until use.</p>
 
    <b>Procedure:</b><br>
 
    Bacterial lysis:
 
    <ol>
 
      <li>After 12-18 hours of inoculation of bacteria expressing luciferase plasmid, pipette 2 mL of cell culture into a clean 2 mL tube. Centrifuge at 10,000 rpm for 1 minute. Pour out liquid into a collection beaker. Continue this process until all of the cell culture (in the inoculation tube) is gone.</li>
 
      <li>Resuspend the pellets in 350 ml of STET buffer (10 mM Tris-HCl with 1 mM EDTA)</li>
 
      <li>Add 25 uL - 30 uL of lysozyme buffer to the resuspended pellet.</li>
 
      <li>Mix by vortexing for 3 seconds.</li>
 
      <li>Incubate for 2 hours at room temperature.</li>
 
      <li>If the reagent is not added immediately, store the lysed bacteria in the -20 ºC freezer until use.</li>
 
    </ol>
 
    Addition of Reagent Solution:
 
    <ol>
 
      <li>Following the above instructions, prepare a 1mM sample of D-Luciferin.</li>
 
      <li>Following the above recipe, prepare the reagent solution.</li>
 
      <li>In a dark room, add about 250-350 uL of reagent solution to each sample of lysis product.</li>
 
      <li>Light should be emitted within two-three seconds.</li>
 
    </ol>
 
    <b>Example Calculations:</b><br>
 
    Lysis Buffer (Desired Total Volume: 15mL)<br>
 
    <table border="1">
 
      <tr>
 
        <td>Chemical Name:</td>
 
        <td>Tris-HCl</td>
 
        <td>EDTA</td>
 
        <td>NaCl</td>
 
      </tr>
 
      <tr>
 
        <td>Molecular Weight:</td>
 
        <td>N/A</td>
 
        <td>292.23 g/mol</td>
 
        <td>58.44 g/mol</td>
 
      </tr>
 
      <tr>
 
        <td>Molarity Desired:</td>
 
        <td>10 mM</td>
 
        <td>1mM</td>
 
        <td>0.1M</td>
 
      </tr>
 
      <tr>
 
        <td>Calculation:</td>
 
        <td>Dilute 1M Tris-HCl:</td>
 
        <td> </td>
 
        <td> </td>
 
      </tr>
 
      <tr>
 
        <td>Final Amount:</td>
 
        <td>150 uL (+14.85 mL ddH2O)</td>
 
        <td>0.00438 g</td>
 
        <td>0.08766 g</td>
 
      </tr>
 
    </table>
 
    Lysozyme Solution (Desired Total Volume: 15mL)<br>
 
    <table border="1">
 
      <tr>
 
        <td>Lysozyme Solubility: </td>
 
        <td>10 mg lysozyme in 1 mL of 10 mM Tris-HCl</td>
 
      </tr>
 
      <tr>
 
        <td>Desired Amount of Lysozyme Solution to Make:</td>
 
        <td>15 mL</td>
 
      </tr>
 
      <tr>
 
        <td>Amount of Lysozyme Needed:</td>
 
        <td>10 mg x 15 = <b>150 mg</b></td>
 
      </tr>
 
      <tr>
 
        <td>Amount of 10 mM Tris-HCl Needed: </td>
 
        <td><b>15 mL</b></td>
 
      </tr>
 
    </table>
 
    Reagent Solution (Desired total volume: 22 mL)<br>
 
    <table border="1">
 
      <tr>
 
        <td>Chemical Name:</td>
 
        <td>ATP disodium salt trihydrate</td>
 
        <td>MgSO4•7H2O</td>
 
        <td>HEPES Buffer</td>
 
        <td>D-Luciferin free acid</td>
 
      </tr>
 
      <tr>
 
        <td>Molecular Weight:</td>
 
        <td>605.24 g/mol</td>
 
        <td>246.5 g/mol</td>
 
        <td>238.3 g/mol</td>
 
        <td>280.33 g/mol</td>
 
      </tr>
 
      <tr>
 
        <td>Molarity Desired:</td>
 
        <td>3 mM</td>
 
        <td>15 mM</td>
 
        <td>30 mM</td>
 
        <td>1 mM</td>
 
      </tr>
 
      <tr>
 
        <td>Calculation:</td>
 
        <td> </td>
 
        <td> </td>
 
        <td> </td>
 
        <td>Use the 1 mM stock solution created earlier</td>
 
      </tr>
 
      <tr>
 
        <td>Final Amount:</td>
 
        <td>0.039945 g</td>
 
        <td>0.081345 g</td>
 
        <td>0.1573 g</td>
 
        <td>22 mL</td>
 
      </tr>
 
    </table>
 
    </p>
 
  </div>
 
</div>
 
 
<div id="chromo" class="collapsed">
 
<h5 style="display:inline-block" onclick="expandchromo()"><span class="noselect">Chromoproteins</span></h5> 
 
<br>
 
<div id="chromoText" style="display:none">
 
    This is the conditions we used to express chromoproteins.
 
 
</div>
 
</div>
 
</div>
 
</div>
Line 542: Line 642:
 
<div id="3a">
 
<div id="3a">
 
   <h4>3A Assembly</h4>
 
   <h4>3A Assembly</h4>
 +
<div id="calculations">
 +
  <h5><span><a href="https://static.igem.org/mediawiki/2015/c/c0/NYU_Shanghai_3AAssemblyNumbers.pdf">Calculations (pdf)</a></span></h5>
 
<div id="transform" class="collapsed">
 
<div id="transform" class="collapsed">
 
  <h5 style="display:inline-block" onclick="expandtransform()"><span class="noselect">Transformation</span></h5>   
 
  <h5 style="display:inline-block" onclick="expandtransform()"><span class="noselect">Transformation</span></h5>   
Line 550: Line 652:
 
   <br><br>Materials
 
   <br><br>Materials
 
     <li>2µl resuspended DNA</li>
 
     <li>2µl resuspended DNA</li>
     <li>Competent cells (50ul per transformation)</li>
+
     <li>Competent cells (50μl per transformation)</li>
 
     <li>Ice</li>
 
     <li>Ice</li>
 
     <li>2ml tube</li>
 
     <li>2ml tube</li>
Line 559: Line 661:
 
     <li>37ºC incubator</li>
 
     <li>37ºC incubator</li>
 
     <li>Shaker</li>
 
     <li>Shaker</li>
 +
  </p>
 +
  <p>
 
   <br><br>Procedure
 
   <br><br>Procedure
 
   <ol>
 
   <ol>
Line 574: Line 678:
 
     <li>You can pick a single colony, make a glycerol stock, grow up a cell culture and miniprep.</li>
 
     <li>You can pick a single colony, make a glycerol stock, grow up a cell culture and miniprep.</li>
 
   </ol>
 
   </ol>
 +
  </p>
 +
  <p>
 
   <br>Controls
 
   <br>Controls
 
     <li>Competent cells on LB plate</li>
 
     <li>Competent cells on LB plate</li>
Line 587: Line 693:
 
  <div id="mpText" style="display:none">
 
  <div id="mpText" style="display:none">
 
   <p>
 
   <p>
       Estimated time
+
       Estimated time: 40 minutes
 
       <br><br>Materials
 
       <br><br>Materials
 
       <li>Biomiga Miniprep Kit</li>
 
       <li>Biomiga Miniprep Kit</li>
      <br><br>Procedure
+
    </p>
 +
    <p>
 +
      <br>Procedure
 
       <ol>
 
       <ol>
 
       <li>Harvest the bacterial culture by centrifugation for 1 min at 10,000 rpm. Pour off the supernatant and blot the inverted tube on a paper towel to remove residue medium. Remove the residue medium completely. </li>
 
       <li>Harvest the bacterial culture by centrifugation for 1 min at 10,000 rpm. Pour off the supernatant and blot the inverted tube on a paper towel to remove residue medium. Remove the residue medium completely. </li>
Line 602: Line 710:
 
       <li>Reinsert the spin column, with the lid open, into the collection tube and centrifuge for 2 minutes at 13,000 rpm. </li>
 
       <li>Reinsert the spin column, with the lid open, into the collection tube and centrifuge for 2 minutes at 13,000 rpm. </li>
 
       <li>Carefully transfer the spin column into a sterile 1.5 mL tube and add 50-100 µL (> 50 µL) Sterile ddH20 or Elution Buffer into the center of the column and let it stand for 2 minutes. Elute the DNA by centrifugation at 13,000 rpm for 1 minute. Reload the eluate into the column and elute again.</li>
 
       <li>Carefully transfer the spin column into a sterile 1.5 mL tube and add 50-100 µL (> 50 µL) Sterile ddH20 or Elution Buffer into the center of the column and let it stand for 2 minutes. Elute the DNA by centrifugation at 13,000 rpm for 1 minute. Reload the eluate into the column and elute again.</li>
 +
      <li>Check results on Nanodrop.</li>
 
       </ol>
 
       </ol>
 
       <br>
 
       <br>
Line 614: Line 723:
 
     <p>Link to <a href="https://www.neb.com/tools-and-resources/usage-guidelines/optimizing-restriction-endonuclease-reactions"> NEB Protocol </a>  
 
     <p>Link to <a href="https://www.neb.com/tools-and-resources/usage-guidelines/optimizing-restriction-endonuclease-reactions"> NEB Protocol </a>  
  
     <br><br>To determine buffer for double digests, we used: <a href="https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder">NEB Protocl</a>
+
     <br><br>To determine buffer for <a href="https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder"> double digests</a>
  
     <br><br>Guide to heat inactivation: <a href="https://www.neb.com/tools-and-resources/usage-guidelines/heat-inactivation">NEB Protocol</a>
+
     <br><br>Guide to <a href="https://www.neb.com/tools-and-resources/usage-guidelines/heat-inactivation">heat inactivation</a>
  
 
     <br><br>General reaction set-up:
 
     <br><br>General reaction set-up:
Line 626: Line 735:
 
       <tr>
 
       <tr>
 
           <td>DNA</td>
 
           <td>DNA</td>
           <td>1 ug</td>
+
           <td>1ug</td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
 
           <td>10X NEB Buffer</td>
 
           <td>10X NEB Buffer</td>
           <td>5uL (1X)</td>
+
           <td>5μl (1X)</td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
Line 646: Line 755:
 
     </table>
 
     </table>
 
     </p>
 
     </p>
 +
  <p>Controls
 +
  <li>DNA with known sites for the enzyme</li>
 +
  <li>If control DNA cleaved and experimental DNA resists cleavage, the two DNAs can be mixed to determine if an inhibitor is present in the experimental sample</li>
 +
  </p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 653: Line 766:
 
  <br>
 
  <br>
 
  <div id="ligateText" style="display:none">
 
  <div id="ligateText" style="display:none">
 +
  <p>Link to <a href="https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202"> NEB Protocol </a></p>
 +
  <ol>
 +
    <li>Make Reaction mixture</li>
 +
    <table border="1">
 +
    <tr style="font-weight: bold;">
 +
      <td><font color="#d66">Components</font></td>
 +
      <td><font color="#d66">20μl Reaction</font></td>
 +
    </tr>
 +
    <tr>
 +
      <td>10X T4 DNA Ligase Buffer*</td>
 +
      <td>2μl</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Vector DNA (4 kb)</td>
 +
      <td>50ng (0.020 pmol)</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Insert DNA (1 kb)</td>
 +
      <td>37.5ng (0.060 pmol)</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Nuclease-free water</td>
 +
      <td>to 20μl</td>
 +
    </tr>
 +
    <tr>
 +
      <td>T4 DNA Ligase</td>
 +
      <td>1μl</td>
 +
    </tr>
 +
    </table>
 +
   
 +
    <li>Ligation temperature and times vary</li>
 +
    <table border="1" width="600">
 +
      <tr>
 +
        <td>For inserting a part into backbone (no 3A assembly), the suggested NEB protocol worked</td>
 +
        <td>16C overnight or room temperature 10min</td>
 +
      </tr>
 +
      <tr>
 +
        <td>For 3A Assembly</td>
 +
        <td>Room temperature for an hour, then overnight in 4degree</td>
 +
      </tr>
 +
    </table>
 +
    <li>Heat inactivate at 65°C for 10 minutes.</li><br>
 +
    <li>Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</li>
 +
  </ol>
  
 +
  <br><p>Controls
 +
      <li>Reaction mixture with no insert DNA</li>
 +
      <li>Reaction mixture with no insert DNA and no ligase</li>
 +
    </p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 661: Line 822:
 
  <br>
 
  <br>
 
  <div id="gelText" style="display:none">
 
  <div id="gelText" style="display:none">
     This is how you do gel electrophoresis.
+
     <p>Reagents and Materials:</p>
 +
      <li>1X TAE buffer</li>
 +
      <li>Graduated cylinder</li>
 +
      <li>125 mL flask</li>
 +
      <li>Agarose</li>
 +
      <li>Gel pouring tray</li>
 +
      <li>Tape</li>
 +
      <li>Gel rig</li>
 +
      <li>Red Safe</li>
 +
      <li>MW ruler</li>
 +
    <br>
 +
    <p>Procedures</p>
 +
    <ol>
 +
      <li>To prepare 0.4% agarose gel for electrophoresis, add 0.4 g of agarose powder into a suitable container with plenty of room to allow the liquid to boil and be swirled.</li>
 +
      <li>Add 100 ml of 1x TAE electrophoresis buffer and swirl to suspend the powder in the buffer.</li>
 +
      <li>Place the flask or the bottle into the microwave and place on a medium setting for 3 mins. Stop the microwave every 30 seconds and swirl the flask or bottle to suspend any undissolved agarose. Boil and swirl until all of the agarose gel particles are dissolved.</li>
 +
      <li>Cool the agarose solution to 55-60ºC. Add 5 µl of 10,000x DuRed and swirl to mix.</li>
 +
      <li>Prepare the gel casting apparatus and pour the molten agarose into the gel casting tray containing the comb. Allow the agarose to solidify at room temperature for 15-20 minutes.</li>
 +
      <li>Carefully remove the comb from the solidified gel.</li>
 +
      <li>Label a microcentrifuge tube for each miniprep sample.</li>
 +
      <li>DO NOT add loading dye directly to DNA minipreps collection tube. In a separate tube add 1 µl of 6x loading dye and add 5 µl of DNA minipreps sample and pipet up and down to mix.</li>
 +
      <li>Run the prepared agarose gel under water to saturate the wells. Then place the gel in the electrophoresis chamber and pour electrophoresis buffer into the chamber until it completely covers the gel by 5mm.</li>
 +
      <li>Load 5 µl of the 1 kb molecular weight ruler into lane one of the gel.</li>
 +
      <li>Load 6 µl of miniprep sample with loading dye into the wells of the gel.</li>
 +
      <li>Connect the electrophoresis chamber to the power supply and turn on the power. Make sure that the wells are closest to the black, or negative side.</li>
 +
      <li>Run the gel at 100V for 30 min, or until the molecular weight ruler is clearly separated. If you need to leave the gel for a longer time (i.e. if you need to go for lunch), you can decrease the voltage to 80V or 90V and run for an hour or 45 minutes, respectively.
 +
      <ul><li>Note: The voltage and times apply for a 1% agarose gel. For a lower concentration of gel (e.g. 0.7%) it will take less time for the gel to run to completion. We suggest to run the gel at 80V for 30 minutes. For longer times, run the gel at 60V for an hour or at 70V for 45 minutes.</li></ul></li>
 +
      <li>Make sure the dye does not run off the gel.</li>
 +
      <li>Visualize the gel and record the results.</li>
 +
    </ol>
 +
 
 +
    <br><p>Controls
 +
      <li>Uncut plasmid</li>
 +
      <li>Uncut insert DNA</li>
 +
      <li>Ladder DNA</li>
 +
    </p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 670: Line 866:
 
  <div id="gelexText" style="display:none">
 
  <div id="gelexText" style="display:none">
 
  <p>
 
  <p>
  Estimated time:
+
  Estimated time: 45 minutes
 
   <br><br>Materials
 
   <br><br>Materials
 
   <br>MinElute Midi Gel Extraction Kit
 
   <br>MinElute Midi Gel Extraction Kit
Line 689: Line 885:
 
     </ol>
 
     </ol>
 
     <br>
 
     <br>
 +
  </p>
 +
  <p>
 +
  Controls
 +
  <li>"Digest empty vector cut with a single enzyme, perform the gel extraction, and re-ligate it. A vector cut with one enzyme should re-ligate very easily and provide plenty of colonies on the plate. If it does, then the inability to clone the DNA may be related to some other factor, such as secondary structure of the DNA, repeat sequences causing instability in E.coli, or the DNA cloned codes for a protein that may be toxic in bacteria." <a href="http://bitesizebio.com/13506/10-tips-for-better-dna-gel-extraction-results/">Bitesize Bio</a>
 
   </p>
 
   </p>
 
</div>
 
</div>
Line 697: Line 897:
 
  <br>
 
  <br>
 
  <div id="PCRText" style="display:none">
 
  <div id="PCRText" style="display:none">
     This is the conditions we used for PCR.
+
     <p>These are the conditions we used to PCR the gBlocks received from IDT. We used <a href="http://www.snapgene.com"> Snapgene </a> to design the primers. We used <a href="https://www.neb.com/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-polymerase-m0491">Q5 High-Fideltiy Polymerase</a>from New England Biolabs.
 +
    <table border="1">
 +
      <tr>
 +
          <td><font color="#d66">Component</font></td>
 +
          <td><font color="#d66">50μl Reaction</font></td>
 +
          <td><font color="#d66">Concentration</font></td>
 +
      </tr>
 +
      <tr>
 +
          <td>5X Q5 Reaction Mix</td>
 +
          <td>25uL</td>
 +
          <td>1X</td>
 +
      </tr>
 +
      <tr>
 +
          <td>10X NEB Buffer</td>
 +
          <td>5uL</td>
 +
          <td>1X</td>
 +
      </tr>
 +
      <tr>
 +
          <td>10uM Forward primer</td>
 +
          <td>2.5uL</td>
 +
          <td>0.5uM</td>
 +
      </tr>
 +
      <tr>
 +
          <td>10uM Forward primer</td>
 +
          <td>2.5uL</td>
 +
          <td>0.5uM</td>
 +
      </tr>
 +
      <tr>
 +
          <td>Template DNA</td>
 +
          <td>10uL</td>
 +
          <td>100ng</td>
 +
      </tr>
 +
      <tr>
 +
          <td>Nuclease-free water</td>
 +
          <td>10μl or none</td>
 +
          <td></td>
 +
      </tr>
 +
    </table>
 +
    <br>
 +
    <table>
 +
    <tr>
 +
          <td><font color="#d66">Initial Denaturation</font></td>
 +
          <td>98C</td>
 +
          <td>30s</td>
 +
      </tr>
 +
      <tr>
 +
          <td><font color="#d66">25 cycles</font></td>
 +
          <td>98C</td>
 +
          <td>15s</td>
 +
      </tr>
 +
      <tr>
 +
          <td>Annealing temp 1</td>
 +
          <td>59.5C</td>
 +
          <td>30s</td>
 +
      </tr>
 +
      <tr>
 +
          <td>Annealing temp 2</td>
 +
          <td>56.3C</td>
 +
          <td>30s</td>
 +
      </tr>
 +
      <tr>
 +
          <td>Annealing temp 3</td>
 +
          <td>53.7C</td>
 +
          <td>30s</td>
 +
      </tr>
 +
      <tr>
 +
          <td>Extension</td>
 +
          <td>72C</td>
 +
          <td>60s</td>
 +
      </tr>
 +
      <tr>
 +
          <td><font color="#d66">Final Extension</font></td>
 +
          <td>72C</td>
 +
          <td>2m</td>
 +
      </tr>
 +
      <tr>
 +
          <td><font color="#d66">Hold</font></td>
 +
          <td>4C</td>
 +
          <td></td>
 +
      </tr>
 +
    </table>
 +
  </p>
 +
  <p>Controls
 +
  <li>No template control</li>
 +
  <li>No enzyme control</li>
 +
  </p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 705: Line 990:
 
  <br>
 
  <br>
 
  <div id="PCRcleanText" style="display:none">
 
  <div id="PCRcleanText" style="display:none">
     This is the conditions we used for PCR cleanup.
+
     <p>We used <a href="https://static.igem.org/mediawiki/2015/d/d1/NYU_Shanghai_Tianquick.pdf">TIANquick Mini Purification Kit</a>.
 +
    <ol>
 +
    <li>Add ethanol (96-100%) to Buffer PW before use (see bottle label
 +
for volume).</li>
 +
    <li>Column equilibration: add 500μl Buffer BL to the Spin Column CB1 (put Spin Column CB1 into a collection tube). Centrifuge for 1min at 12,000 rpm. Discard the flow-through, and then place Spin Column CB1 back into the collection tube.</li>
 +
    <li>Add 5 volumes of Buffer PB to 1 volume of the PCR reaction or enzymatic reaction and mix.</li>
 +
    <li>Transfer the mixture to the Spin Column CB1, incubate at room temperature for 2min. Centrifuge for 30-60s at 12,000rpm. Discard the flow-through, and then place Spin Column CB1 back into the same collection tube.
 +
    <br>The maximum loading volume of the column is 800μl. For sample volumes greater than 800 μl simply load again.</li>
 +
    <li>Add 600 μl Buffer PW (ensure that ethanol has been added) to the Spin Column CB1 and centrifuge for 30-60s at 12,000 rpm. Discard the flow-through, and place Spin Column CB1 back in the same collection tube.
 +
    <br>Note: If the purified DNA is used for the subsequent salt sensitive experiments, such as ligation or sequencing experiment, it is suggested to stand for 2-5min after adding Buffer PW, and then centrifuge.</li>
 +
    <li>Repeat step 4.</li>
 +
    <li>Centrifuge at 12,000 rpm for 2min to remove residual Buffer PW. Discard the flow-through, and allow the column to air dry with the cap open for several minutes to dry the membrane.</li>
 +
    <li>Place the Spin Column CB1 in a clean 1.5ml microcentrifuge tube. Add 20μl Buffer EB to the center of membrane, incubate for 2min, and centrifuge for 2min at 12,000 rpm</li>
 +
    </ol>
 +
    </p>
 
</div>
 
</div>
 
</div>
 
</div>

Latest revision as of 16:56, 18 September 2015

Protocols

We built our constructs from pre-made biobrick parts. Our overall conclusion is that 3A assembly is generally inefficient, and an insufficient method for adding small parts (such as a terminator) to a larger construction within pSB1C3. We learned that ratios were extremely important in the process of 3A Assembly, and we made a summary sheet of the equations we used in pre-digest and pre-ligation that accounts for digest dilution and amount needed to ensure results are seen on a gel, not just ligation ratios. We wished we used gibson assembly.


Making Color

Recipes

3A Assembly

Calculations (pdf)