Difference between revisions of "Team:Stanford-Brown/bioHYDRA"

 
(46 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 +
{{SB2015_NavBar}}
  
 
<html lang="en">
 
<html lang="en">
Line 14: Line 15:
  
 
</head>
 
</head>
<!-- NAVBAR
 
================================================== -->
 
<div class="container">
 
  <nav class="navbar navbar-material-light-blue navbar-fixed-top oriEdit">
 
 
    <div class="container">
 
 
      <div class="navbar-header">
 
 
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
 
 
          <span class="sr-only">Toggle navigation</span>
 
          <span class="icon-bar"></span>
 
          <span class="icon-bar"></span>
 
          <span class="icon-bar"></span>
 
 
        </button>
 
        <a class="navbar-brand" href="https://2015.igem.org/Team:Stanford-Brown">SB iGEM</a>
 
      </div>
 
 
      <div id="navbar" class="navbar-collapse collapse">
 
 
        <ul class="nav navbar-nav">
 
 
          <li class="active"><a href="https://2015.igem.org/Team:Stanford-Brown">Home</a></li>   
 
 
          <li class="dropdown">
 
            <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">About</a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Team">Our Team</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Attributions">Attributions</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Gallery">Picture Gallery</a></li>
 
            </ul>
 
          </li> 
 
 
          <li class="dropdown">
 
            <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">Outreach</a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Outreach">Outreach</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Practices">Human Practicies</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Collaboration">Collaboration</a></li>
 
            </ul>
 
          </li>
 
 
          <li class="dropdown">
 
            <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">Projects</a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Projects">Project Overview</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Vision">The Vision</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Biobricks">BioBricks</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Notebooks">Notebooks and Protocols</a></li>
 
              <li class="divider"></li>
 
              <li class="dropdown-header">Sub-Projects</li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/PS">PS Synthesis</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/PHA">PHA Synthesis</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/CRATER">CRATER</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/CASH">CASH</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Cellulose">Cellulose</a></li>
 
            </ul>
 
          </li>
 
        </ul>
 
      </div>
 
    </div>
 
  </nav>
 
</div>   
 
  
 
<div class="jumbotron oridomiLeft">
 
<div class="jumbotron oridomiLeft">
 
   <div class="container">
 
   <div class="container">
     <h1>Welcome to bioHYDRA<small> Scaling up nanoscale contractions of Bacillus spores to the macro scale, biologically.<small></h1>
+
     <h1>Welcome to BioHYDRA<small> <br>Creating Biological Artificial Muscles <small></h1>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 95: Line 31:
 
  <div class="row featurette">
 
  <div class="row featurette">
  
   <div class="col-md-7">
+
   <!--<div class="pull-right">
     <h2 class="featurette-heading">Abstract<span class="small">Why spores?</span></h2>
+
     <iframe width="640" height="360" src="https://www.youtube.com/embed/aeTLC_qxhKY" frameborder="0" allowfullscreen></iframe>
    <p class="lead">This past year, Chen et al. at Columbia University devised a way to utilize the power of evaporation and the way Bacillus Spores expand and contract depending on ambient humidity in order to create contractile structures coined as “HYDRA” (Hygroscopy driven artificial muscles). We improved on this technology by creating fully biological hydras, using cellulose instead of polyimide, and incorporating cellulose binding sites on the spore coats instead of using artificial artificial glue.</p>
+
   </div>-->
    <a href="https://2015.igem.org/Team:Stanford-Brown/Biobricks" class="btn btn-success btn-lg">See our BioBricks</a>
+
   </div>
+
  
   <div class="col-md-5">
+
    
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
 
 +
<div class="row featurette">
 +
  <div class="pull-right">
 +
    <div>
 +
      <video poster="https://static.igem.org/mediawiki/2015/8/8f/SB2015_bioHYDRAFreezeFrameVid.png" controls width="558" height="316">
 +
        <source src="https://static.igem.org/mediawiki/2015/4/43/SB2015_WelcomeToBioHydraVidmp4.mp4" type='video/mp4'/>
 +
        <a href="https://youtu.be/xfFSah3Mrrg"><img border="0" src="https://static.igem.org/mediawiki/2015/f/f2/SB2015_CraterVideoFreezeFrame.png" alt="Click to view on Youtube" width="558" height="316"></a>
 +
        <p style="font-style:italic;color:red;border-style:solid;border-width:2px;border-color:red">Your browser either does not support HTML5 or cannot handle MediaWiki open video formats. Please consider upgrading your browser, installing the appropriate plugin or switching to a Firefox or Chrome install.</p>
 +
      </video>
 +
    </div>
 +
    <br>
 
   </div>
 
   </div>
 +
 +
 +
  <h2 class="featurette-heading">Abstract <span class="small"> <br>What is bioHYDRA?</span></h2>
 +
  <p class="lead"> BioHYDRA is a project to create biological artificial muscles that respond to changes in humidity. This past year, Chen <i> et al.</i> [1] at Columbia University devised a way to utilize the power of evaporation and the way <i>Bacillus</i> spores expand and contract depending on ambient humidity in order to create contractile structures coined as “HYDRA” (Hygroscopy driven artificial muscles). We wanted to improve on this technology by creating fully biological hydras, using cellulose instead of polyimide, and incorporating cellulose binding sites on the spore coats instead of using artificial artificial glue. By affixing the ends of these HYDRAs to a given substrate, we could produce a folding mechanism that not responds to humidity, but is also reversible.</p>
 +
  <a href="https://2015.igem.org/Team:Stanford-Brown/Parts" class="btn btn-success btn-lg">See our BioBricks</a>
 +
 +
<!--  <div class="col-md-5">
 +
    <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/d/da/SB2015_SEMSporeCluster.png" alt="Generic placeholder image">
 +
    <p> Fig. 1 Scanning Electron Microscope picture of spores from our lab
 +
    </p>
 +
  </div> -->
 
</div>
 
</div>
  
Line 109: Line 64:
 
<div class="row featurette">
 
<div class="row featurette">
 
   <div class="col-md-7 col-md-push-5">
 
   <div class="col-md-7 col-md-push-5">
     <h2 class="featurette-heading">Introduction<span class="small"> How spores and the Stanford-Brown 2015 iGEM team first met</span></h2>
+
     <h2 class="featurette-heading">Introduction<span class="small"> <br>How spores and the Stanford-Brown 2015 iGEM team first met</span></h2>
     <p class="lead">In our search for a biological agent that can contract and at the same time have high resistance to the environment, we came across bacterial spores. Bacterial spores are usually thought of as inert, hibernating organisms with little to no metabolic function. In response to stressful environmental conditions, vegetative Bacillus will sporulate to produce robust organisms called spores, which can survive in extreme conditions for many years. To be able to germinate and regain full vegetative function, they have to maintain a certain internal environment so as to preserve the integrity of its organelles while in spore form. To regulate the humidity content in the spore core, bacillus have adapted by changing the shape of its wrinkled spore cortex with various degrees of humidity. As the air becomes dryer, the spores shrinks, and vice versa. We sought to improve on the work of Chen et al. (Columbia University) and their HYDRA technology (Pic. 1) to create fully biological HYDRAs, using cellulose and cellulose binding domains on the spore coat.</p>
+
     <p class="lead">In our search for a folding mechanism for biOrigami, we wanted to find a something that wasn't a material, but a biological agent that could contract and at the same time have high resistance to harsh environments. That is how we first met bacterial spores. But, bacterial spores are usually thought of as inert, hibernating organisms with little to no metabolic function. So how can these actually be useful to us? <br>
 +
      In response to stressful environmental conditions, vegetative <i>Bacillus subtilis</i> will sporulate to produce robust organisms called spores, which can survive in extreme conditions for many years. To be able to germinate and regain full vegetative function, they have to maintain a certain internal environment so as to preserve the integrity of its organelles while in spore form. To regulate the humidity content in the spore core, <i>B. subtilis</i> have adapted by changing the shape of its wrinkled spore cortex with various degrees of humidity. As the air becomes dryer, the spores shrinks, and vice versa. Suddenly, we have a folding mechanism. Thus, we sought to improve on the work of Chen <i> et al.</i> (Columbia University) and their HYDRA technology (Fig. 2), which is able to scale up the nano scale contractions of spores to the macro scale. We wanted to create fully biological HYDRAs, using cellulose and cellulose binding domains on the spore coat.</p>
 +
    </div>
 +
    <div class="col-md-5 col-md-pull-7">
 +
      <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/d/da/SB2015_SEMSporeCluster.png" alt="Generic placeholder image">
 +
      <p> Fig. 1 Scanning Electron Microscope picture of spores from our lab
 +
      </p>
 +
      <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/f/fc/SB2015_HYDRAsInParallelChenetAl.jpeg" alt="Generic placeholder image">
 +
      <p> Fig. 2 HYDRAs in parallel (Chen <i> et al.</i>) [1]
 +
      </p>
 +
    </div>
 
   </div>
 
   </div>
  <div class="col-md-5 col-md-pull-7">
 
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
  </div>
 
</div>
 
  
<p>Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex.
 
  
   Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim.
+
   <div class="row featurette">
 +
    <div class="col-md-7">
 +
      <h2 class="featurette-heading">Experiment <span class="small"> <br>From synthetic to biological </span></h2>
 +
      <p class="lead">
 +
        There were two experiments, recreating HYDRAs from the Chen <i>et al. </i> publication, and creating bioHYDRAS, which are fully biological versions of HYDRAs.
 +
      </p>
 +
    </div>
 +
    <div class="col-md-1"></div>
 +
    <div class="col-md-4">
 +
      <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/5/5f/SB2015_SEMSporesOnHydra.png" alt="Generic placeholder image">
 +
      <p> Fig. 3 Spores on one of our HYDRA samples
 +
      </div>
 +
    </div>
  
  Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros.
+
    <p>
 +
      <b>Recreating HYDRAs:</b> By expanding on the protocol by Chen <i> et al.</i> [1] to create HYDRAs, we then used desiccant and wet paper towels in separate chambers to create humidity variance for these HYDRAs to expand and contract, and recorded our results using a ruler and a humidity sensor.
 +
    </p>
 +
    <p>
  
</p>
+
      <b>BioHYDRAs:</b>
 +
      The goal of BioHYDRA was to replace all the parts of HYDRAs by biologically produced substances. We sought out to replace polyamide tape by bacterially cellulose, and the glue by cellulose binding domains on the surface of the spore coat.
 +
      Thus, the first step involved cloning a <i> Bacillus </i> construct in <i> Escherichia coli </i> of a fusion protein consisting of a spore coat protein, cotZ (building off work done on Sporobeads by the LMU Munich 2012 iGEM team), and a cellulose binding domain (CIPA). Additionally, we decided to add aeBlue, a chromogenic protein, between cotZ and CIPA to be able to see with the naked eye whether Bacillus is in a vegetative or a spore state. The plasmid would thereafter need to be transformed and expressed in <i> Bacillus </i>. Here is a link to our part: <a href="http://parts.igem.org/Part:BBa_K1692028">BBa_K1692028 </a>.<br>
 +
      We then needed to produce bacterial cellulose. For more details, refer to our <a href="https://2015.igem.org/Team:Stanford-Brown/Cellulose ">Cellulose</a> page.<br>
 +
      Finally, our project would consist of testing for the binding affinity of the spores on the cellulose before we could construct our bioHYDRAs. To do so, we used the cellulose binding affinity protocol that the 2015 Edinburgh team sent us in light of our collaboration.
 +
    </p>
  
  
<div class="row featurette">
+
    <div class="row featurette">
  <div class="col-md-7">
+
      <div class="col-md-7 col-md-push-5">
    <h2 class="featurette-heading">Experiment <span class="small">Engineering E. coli to produce polystyrene</span></h2>
+
        <h2 class="featurette-heading">Data and Results <span class="small"> <br>Our results show promising initial results for future teams to expand on this project.</span></h2>
    <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
      </div>
 +
      <div class="col-md-5 col-md-pull-7">
 +
        <br><br><br><br>
 +
        <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/f/f4/SB2015_HydrasNextToRuler.png" alt="Generic placeholder image">
 +
        <p>Fig. 4 HYDRA in a humid and dry environment over the span of ~1 min. The HYDRA is only functional for the leftmost 3 cm, hence why measurements were only taken over that length</p>
 +
      </div>
 +
    </div>
 +
    <div class="row featurette">
 +
  <div class="pull-right">
 +
    <div>
 +
      <video poster="https://static.igem.org/mediawiki/2015/5/50/SB2015_HydraTimeLapseFreezeFramce.png" controls width="558" height="316">
 +
        <source src="https://static.igem.org/mediawiki/2015/0/0e/SB2015_HYDRATimeLapsemp4.mp4" type='video/mp4'/>
 +
        <a href="https://youtu.be/xfFSah3Mrrg"><img border="0" src="https://static.igem.org/mediawiki/2015/f/f2/SB2015_CraterVideoFreezeFrame.png" alt="Click to view on Youtube" width="558" height="316"></a>
 +
        <p style="font-style:italic;color:red;border-style:solid;border-width:2px;border-color:red">Your browser either does not support HTML5 or cannot handle MediaWiki open video formats. Please consider upgrading your browser, installing the appropriate plugin or switching to a Firefox or Chrome install.</p>
 +
      </video>
 +
 
 +
    </div>
 +
    Vid. 1 HYDRA from 50% humidity to ~0% humidity (in the desiccator)
 +
    <br>
 
   </div>
 
   </div>
  <div class="col-md-1"></div>
 
  <div class="col-md-4">
 
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
  </div>
 
</div>
 
  
<p>Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex.
 
  
  Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim.
+
    <p> <b>Recreating HYDRA:</b> We were able to successfully create HYDRA by expanding on the work of Chen <i> et al. </i>. This was done as a proof of concept that this technology works and can be easily reproduced in a small lab setting. We constructed full lengths HYDRAs as described in Chen <i> et al. </i> [1]. <br>
 +
      Fig. 4. above shows our first functional HYDRA. On the left is a video of the HYDRA in action.
  
  Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros.
 
  
  Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis.
+
    </p><br><br><br><br><br><br><br><br><br><br><br>
  
  Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.</p>
 
  
  
  <div class="row featurette">
+
    <p> <b>BioHYDRA:</b> We were able to successfully create the fusion protein cotZ-aeBLUE-CIPA in <i> E. coli </i>. This construct was ligated into the pSBbs1C backbone (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K823023">BBa_K823023</a>). We then transformed <i> E. coli </i> to grow our plasmid. We are excited to have been able to use our newly developed <a href="https://2015.igem.org/Team:Stanford-Brown/CRATER"> CRATER </a> technique to better select for our plasmid when transforming, which accelerated our project substantially. By running the plasmid through a gel and by sequencing, we were able to confirm that we had the right size (8 kb) and sequence for the plasmid. <br>
    <div class="col-md-7 col-md-push-5">
+
       We then transformed our construct into <i> B. Subtilis</i>. This was our main setback for this project, as many protocols did not seem to function. We believe that our 8 kb construct was very large and thus was hard to transform. After trying Xylose competence induced cells and electroporation, we decided to use the LMU Munich's MNGE transformation protocol. by picking certain colonies and undergoing colony PCR, we found that certain colonies seem to contain our part, which was confirmed by sequencing. Below is some data showing differential absorption between our control (aeBlue-) and our two samples which contain the insert (aeBlue+), using a spectrophotometer. <br>
       <h2 class="featurette-heading">Data and Results <span class="small">Optimizing the production of biological PHA</span></h2>
+
      <img src="https://static.igem.org/mediawiki/2015/e/e9/SB2015_cotzaeBlueSpectrophotometry.png" alt="Generic placeholder image"><br>
       <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
      Pic 5. Absorption spectra of our transformed spores (aeBlue+) and wild type spores (aeBlue-).<br><br>
    </div>
+
 
    <div class="col-md-5 col-md-pull-7">
+
      While absorbance at 597 nm (characteristic to <a href="http://parts.igem.org/Part:BBa_K1033929"> aeBlue</a>) does not show, there is a higher overall absorbance despite having the same spore concentration. Further testing is being done to determine the cause of this absorbance.<br><br>
       <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
      We also undertook a cellulose binding assay using scanning electron microscopy. We used four samples:<br>
    </div>
+
      1. Wild type spores without a PBS wash<br>
  </div>
+
      2. Spores with our contstruct without a PBS wash<br>
 +
      3. Wild type spores with a PBS wash <br>
 +
      4. Spores with our contstruct with a PBS wash<br>
 +
      All spore samples were diluted to the same concentration of 10^9 spores/ml<br>
 +
 
 +
       Here are our results: <br>
 +
     
 +
      <img src="https://static.igem.org/mediawiki/2015/2/2b/SB2015_CBDResultsWithLabelsAndGraph.png" alt="Generic placeholder image"><br>
 +
 
 +
      Fig. 6 a. Wild type spores without a PBS wash (35 cells). b. Wild type spores with a PBS wash (10 cells). c. Spores with our construct without a PBS wash (463 cells). d. Spores with our construct with a PBS wash(93 cells). e. Graphical representation of cells remaining on each sample. <br><Br>
 +
 
 +
 
 +
 
 +
      We can see that there is not only a net difference between washing and not washing the cellulose. But even more importantly, we can see that our construct yields a greater amount of spores adhering to the cellulose. These pictures were taken as representative of each sample, and thus these preliminary cell counts are accurate enough to show a statistical difference between cells that contain our construct and cells that do not. A PBS wash should get rid of all cells on the cellulose, but we can see that our CIPA+ spores are able to remain on the cellulose despite this wash, whereas the wild type CIPA- spores are almost fully washed out. This shows that our construct works. <br><br>
 +
 
 +
      <b> Future Goals </b>: From our work and the work done by Chen <i> et al. </i>, we know that synthetic HYDRAs function and can produce a large amount of force (10MJ/cm^3) [1]. Next steps would include building a biological HYDRA. While we have started to characterize our part, further tests would need to be done. We would need to evaluate why the spores do not show a distinct blue color from its aeBlue domain. Then, to better quantify cellulose binding, we would need to assay using absorbance left after x number of washes. After this characterization is finished, we would then reconstruct a HYDRA with cellulose and spores. If we succeed, the bioHYDRAs could then be used as a reversible, biological, self-folding mechanism for biOrigami. In conjunction with bioplastics, we can then create structures that contain both reversible and irreversible folds, expanding the potential and complexity of the structures we make with biOrigami. </p>
 +
 
 +
      <a href="https://2015.igem.org/Team:Stanford-Brown/Gallery" class="btn btn-warning btn-lg">See our Picture Gallery!</a>
 +
 
 +
       <h2>Protocols</h2>
 +
 
 +
      <p>
 +
        <b>Making HYDRAs (from Columbia's Chen <i>at al.</i>:</b> [1]
 +
      </p>
 +
      <p>
 +
        We used 5µl of 0.1% Poly-L-Lysine to coat the polyamide tape on each spot where we wanted to put spores. We then allowed it to dry for several hours. A spore-glue mixture was made using 1µl of Elmer’s glue with 1 ml of a suspension of spores (2.55e9 spores/ml). 10µl of this spore glue mixture was applied to the poly-L-Lysine coated surfaces and allowed to dry. It is crucial to ensure that there is no surface on the polyimide tape that is not covered with spores.
 +
 
 +
        <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/e/e6/SB2015_HYDRAdiagram.png" alt="Generic placeholder image">
 +
      </p>
 +
 
 +
      <p>
 +
        <b>Sporulation:</b> [2]
 +
      </p>
 +
      <p>
 +
 
 +
        Difco Sporulation Medium (DSM)
 +
        Per liter:<br><br>
 +
        Bacto nutrient broth (Difco) 8 g<br>
 +
        10% (w/v) KCl 10 ml<br>
 +
        1.2% (w/v) MgSO4·7H2O 10 ml<br>
 +
        1 M NaOH ~1.5 ml (pH to 7.6)<br>
 +
 
 +
        Adjust volume to 1 liter with ddH20.  pH to 7.6.  Autoclave and allow to cool to 50°C. <br> <br>
 +
 
 +
        Just prior to use, add the following sterile solutions (and antibiotics if required):<br><br>
 +
        1 M Ca(NO3)2 1 ml<br>
 +
        0.01 M MnCl2 1 ml<br>
 +
        1 mM FeSO4 1 ml<br>
  
  <p>Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex.
+
        Procedure:<br><br>
  
    Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim.
+
        1. Inoculate colony into 25 ml DSM and grow at 37°C and 150 rpm until mid-log phase
 +
        0.45 &lt; OD600 &lt; 0.6 (usually 2 hours). <br>
  
    Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros.
 
  
    Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis.
+
        2. Dilute 1 to 10 into 250 ml of prewarmed (37°C) DSM in 2L flask. Incubate a further
 +
        48 hrs at 37°C and 150 rpm. Observe culture occasionally during growth, and continue
 +
        to next step if >90% of culture are free spores.<br>
  
    Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.</p>
+
        3. Centrifuge the culture 10 min at 10,000xg and carefully discard the supernatant.<br>
  
    <a href="https://2015.igem.org/Team:Stanford-Brown/Gallery" class="btn btn-warning btn-lg">See our Picture Gallery!</a>
+
        4. Wash the pellet with 200 ml of cold (4°C) sterile distilled water. Centrifuge for 10 min <br>
 +
        at 10,000xg and again discard the supernatant.<br>
  
    <h2>Protocols</h2>
+
        5. Resuspend the pellet in 200 ml cold distilled water and leave at 4°C overnight.<br>
  
    <p>Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor.
+
      </p>
       <p>Duis nec nibh non nisl tristique condimentum quis eu leo.</p>
+
       <p>
       <p>Sed venenatis massa in tortor gravida dictum.</p>
+
        <b>Cloning:</b>
      Nam sollicitudin enim ac egestas fermentum.
+
        All our cloning was done with standard BioBrick cutsites. Our part was synthesized by IDT.
      Suspendisse tempor urna vel mollis mollis.
+
      </p>
       Proin ac mauris facilisis sapien maximus suscipit nec eget felis.
+
       <p>
       Fusce ac urna sit amet nunc condimentum gravida.
+
        <b>Spectrophotometry of spores for aeBlue Absorbance:</b> <br><br>
      Aenean commodo nunc et tempus egestas.
+
        1. Determine spore concentration using microscopy and a hemocytometer. <br>
      Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis.
+
        2. Dilute spore suspensions to the same concentration (we used 1*10^9 cells/ml).<br>
      Curabitur et erat non justo eleifend commodo.
+
        3. Add 200 µl of each sample into the wells of a 96 well plate.<br>
      In sit amet sem vitae eros placerat facilisis.
+
        4. Run a whole spectrum analysis.<br>
      Quisque eget ligula vel tellus fermentum vestibulum.
+
       </p>
      Curabitur eu ligula non lorem pulvinar posuere ac commodo ante.
+
       <p>
      Sed convallis quam ut risus dignissim, nec pellentesque risus malesuada.
+
        <b>CipA-cellulose binding assay using microscopy:</b> <br><br>
      Vestibulum vel sem eu tortor ornare consequat ac eget ligula.
+
        A - Cellulose Binding<br><br>
      Suspendisse eu lacus ut nisi aliquet mollis id nec eros.
+
        1. Dilute spore suspensions to an equal concentration. <br>
      Integer vulputate sem sed massa porta, eget dapibus odio pellentesque.
+
        2. Spin down the spore suspensions and re-suspend in PBS.<br>
       Morbi sit amet lacus quis urna mattis elementum.</p>
+
        3. Add 1.5 ml of spores PBS suspension to 2 ml tubes.<br>
 +
        4. Cut a small piece of bacterial cellulose (BC) and add it to the 2 ml tubes containing the spores. <br>
 +
        5. Let the 2 ml tubes sit for 1h at room temperature.<br><br>
 +
        B - Washing and imaging <br><br>
 +
        1. Fill 2 ml tubes with 1.5 ml PBS.<br>
 +
        2. Take our the cellulose from the spore - PBS suspension and place in the new PBS 2 ml tubes<br>
 +
        3. Slightly shake for 20 minutes.<br>
 +
        4. Extract the cellulose and place in fume hood to dry.<br>
 +
        5. Image through scanning electron microscopy.<br>
 +
       </p>
  
       <a href="https://2015.igem.org/Team:Stanford-Brown/Notebooks" class="btn btn-danger btn-lg">See our Lab Notebook!</a>
+
       <a href="https://static.igem.org/mediawiki/2015/b/b7/SB2015_BioHYDRANotebook.pdf" class="btn btn-danger btn-lg">See our Lab Notebook!</a>
  
 
       <h2>References</h2>
 
       <h2>References</h2>
  
       <p>Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor.
+
       <p>[1] Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6:7346 doi: 10.1038/ncomms8346 (2015).
        Duis nec nibh non nisl tristique condimentum quis eu leo.
+
      </p>
        Sed venenatis massa in tortor gravida dictum.
+
      <p> [2] W. Nicholson & P. Setlow, in Molecular Biological Methods for Bacillus, eds. C.  
        Nam sollicitudin enim ac egestas fermentum.
+
         Harwood & S. Cutting, New York: John Wiley, pp.391-450, 1990.</p>
        Suspendisse tempor urna vel mollis mollis.
+
        Proin ac mauris facilisis sapien maximus suscipit nec eget felis.
+
        Fusce ac urna sit amet nunc condimentum gravida.
+
        Aenean commodo nunc et tempus egestas.
+
        Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis.
+
        Curabitur et erat non justo eleifend commodo.
+
         In sit amet sem vitae eros placerat facilisis.
+
        Quisque eget ligula vel tellus fermentum vestibulum.p>
+
  
 
       </div><!-- /.container -->
 
       </div><!-- /.container -->

Latest revision as of 22:50, 18 September 2015

SB iGEM 2015

Welcome to BioHYDRA
Creating Biological Artificial Muscles


Abstract
What is bioHYDRA?

BioHYDRA is a project to create biological artificial muscles that respond to changes in humidity. This past year, Chen et al. [1] at Columbia University devised a way to utilize the power of evaporation and the way Bacillus spores expand and contract depending on ambient humidity in order to create contractile structures coined as “HYDRA” (Hygroscopy driven artificial muscles). We wanted to improve on this technology by creating fully biological hydras, using cellulose instead of polyimide, and incorporating cellulose binding sites on the spore coats instead of using artificial artificial glue. By affixing the ends of these HYDRAs to a given substrate, we could produce a folding mechanism that not responds to humidity, but is also reversible.

See our BioBricks

Introduction
How spores and the Stanford-Brown 2015 iGEM team first met

In our search for a folding mechanism for biOrigami, we wanted to find a something that wasn't a material, but a biological agent that could contract and at the same time have high resistance to harsh environments. That is how we first met bacterial spores. But, bacterial spores are usually thought of as inert, hibernating organisms with little to no metabolic function. So how can these actually be useful to us?
In response to stressful environmental conditions, vegetative Bacillus subtilis will sporulate to produce robust organisms called spores, which can survive in extreme conditions for many years. To be able to germinate and regain full vegetative function, they have to maintain a certain internal environment so as to preserve the integrity of its organelles while in spore form. To regulate the humidity content in the spore core, B. subtilis have adapted by changing the shape of its wrinkled spore cortex with various degrees of humidity. As the air becomes dryer, the spores shrinks, and vice versa. Suddenly, we have a folding mechanism. Thus, we sought to improve on the work of Chen et al. (Columbia University) and their HYDRA technology (Fig. 2), which is able to scale up the nano scale contractions of spores to the macro scale. We wanted to create fully biological HYDRAs, using cellulose and cellulose binding domains on the spore coat.

Generic placeholder image

Fig. 1 Scanning Electron Microscope picture of spores from our lab

Generic placeholder image

Fig. 2 HYDRAs in parallel (Chen et al.) [1]

Experiment
From synthetic to biological

There were two experiments, recreating HYDRAs from the Chen et al. publication, and creating bioHYDRAS, which are fully biological versions of HYDRAs.

Generic placeholder image

Fig. 3 Spores on one of our HYDRA samples

Recreating HYDRAs: By expanding on the protocol by Chen et al. [1] to create HYDRAs, we then used desiccant and wet paper towels in separate chambers to create humidity variance for these HYDRAs to expand and contract, and recorded our results using a ruler and a humidity sensor.

BioHYDRAs: The goal of BioHYDRA was to replace all the parts of HYDRAs by biologically produced substances. We sought out to replace polyamide tape by bacterially cellulose, and the glue by cellulose binding domains on the surface of the spore coat. Thus, the first step involved cloning a Bacillus construct in Escherichia coli of a fusion protein consisting of a spore coat protein, cotZ (building off work done on Sporobeads by the LMU Munich 2012 iGEM team), and a cellulose binding domain (CIPA). Additionally, we decided to add aeBlue, a chromogenic protein, between cotZ and CIPA to be able to see with the naked eye whether Bacillus is in a vegetative or a spore state. The plasmid would thereafter need to be transformed and expressed in Bacillus . Here is a link to our part: BBa_K1692028 .
We then needed to produce bacterial cellulose. For more details, refer to our Cellulose page.
Finally, our project would consist of testing for the binding affinity of the spores on the cellulose before we could construct our bioHYDRAs. To do so, we used the cellulose binding affinity protocol that the 2015 Edinburgh team sent us in light of our collaboration.

Data and Results
Our results show promising initial results for future teams to expand on this project.





Generic placeholder image

Fig. 4 HYDRA in a humid and dry environment over the span of ~1 min. The HYDRA is only functional for the leftmost 3 cm, hence why measurements were only taken over that length

Vid. 1 HYDRA from 50% humidity to ~0% humidity (in the desiccator)

Recreating HYDRA: We were able to successfully create HYDRA by expanding on the work of Chen et al. . This was done as a proof of concept that this technology works and can be easily reproduced in a small lab setting. We constructed full lengths HYDRAs as described in Chen et al. [1].
Fig. 4. above shows our first functional HYDRA. On the left is a video of the HYDRA in action.












BioHYDRA: We were able to successfully create the fusion protein cotZ-aeBLUE-CIPA in E. coli . This construct was ligated into the pSBbs1C backbone (BBa_K823023). We then transformed E. coli to grow our plasmid. We are excited to have been able to use our newly developed CRATER technique to better select for our plasmid when transforming, which accelerated our project substantially. By running the plasmid through a gel and by sequencing, we were able to confirm that we had the right size (8 kb) and sequence for the plasmid.
We then transformed our construct into B. Subtilis. This was our main setback for this project, as many protocols did not seem to function. We believe that our 8 kb construct was very large and thus was hard to transform. After trying Xylose competence induced cells and electroporation, we decided to use the LMU Munich's MNGE transformation protocol. by picking certain colonies and undergoing colony PCR, we found that certain colonies seem to contain our part, which was confirmed by sequencing. Below is some data showing differential absorption between our control (aeBlue-) and our two samples which contain the insert (aeBlue+), using a spectrophotometer.
Generic placeholder image
Pic 5. Absorption spectra of our transformed spores (aeBlue+) and wild type spores (aeBlue-).

While absorbance at 597 nm (characteristic to aeBlue) does not show, there is a higher overall absorbance despite having the same spore concentration. Further testing is being done to determine the cause of this absorbance.

We also undertook a cellulose binding assay using scanning electron microscopy. We used four samples:
1. Wild type spores without a PBS wash
2. Spores with our contstruct without a PBS wash
3. Wild type spores with a PBS wash
4. Spores with our contstruct with a PBS wash
All spore samples were diluted to the same concentration of 10^9 spores/ml
Here are our results:
Generic placeholder image
Fig. 6 a. Wild type spores without a PBS wash (35 cells). b. Wild type spores with a PBS wash (10 cells). c. Spores with our construct without a PBS wash (463 cells). d. Spores with our construct with a PBS wash(93 cells). e. Graphical representation of cells remaining on each sample.

We can see that there is not only a net difference between washing and not washing the cellulose. But even more importantly, we can see that our construct yields a greater amount of spores adhering to the cellulose. These pictures were taken as representative of each sample, and thus these preliminary cell counts are accurate enough to show a statistical difference between cells that contain our construct and cells that do not. A PBS wash should get rid of all cells on the cellulose, but we can see that our CIPA+ spores are able to remain on the cellulose despite this wash, whereas the wild type CIPA- spores are almost fully washed out. This shows that our construct works.

Future Goals : From our work and the work done by Chen et al. , we know that synthetic HYDRAs function and can produce a large amount of force (10MJ/cm^3) [1]. Next steps would include building a biological HYDRA. While we have started to characterize our part, further tests would need to be done. We would need to evaluate why the spores do not show a distinct blue color from its aeBlue domain. Then, to better quantify cellulose binding, we would need to assay using absorbance left after x number of washes. After this characterization is finished, we would then reconstruct a HYDRA with cellulose and spores. If we succeed, the bioHYDRAs could then be used as a reversible, biological, self-folding mechanism for biOrigami. In conjunction with bioplastics, we can then create structures that contain both reversible and irreversible folds, expanding the potential and complexity of the structures we make with biOrigami.

See our Picture Gallery!

Protocols

Making HYDRAs (from Columbia's Chen at al.: [1]

We used 5µl of 0.1% Poly-L-Lysine to coat the polyamide tape on each spot where we wanted to put spores. We then allowed it to dry for several hours. A spore-glue mixture was made using 1µl of Elmer’s glue with 1 ml of a suspension of spores (2.55e9 spores/ml). 10µl of this spore glue mixture was applied to the poly-L-Lysine coated surfaces and allowed to dry. It is crucial to ensure that there is no surface on the polyimide tape that is not covered with spores. Generic placeholder image

Sporulation: [2]

Difco Sporulation Medium (DSM) Per liter:

Bacto nutrient broth (Difco) 8 g
10% (w/v) KCl 10 ml
1.2% (w/v) MgSO4·7H2O 10 ml
1 M NaOH ~1.5 ml (pH to 7.6)
Adjust volume to 1 liter with ddH20. pH to 7.6. Autoclave and allow to cool to 50°C.

Just prior to use, add the following sterile solutions (and antibiotics if required):

1 M Ca(NO3)2 1 ml
0.01 M MnCl2 1 ml
1 mM FeSO4 1 ml
Procedure:

1. Inoculate colony into 25 ml DSM and grow at 37°C and 150 rpm until mid-log phase 0.45 < OD600 < 0.6 (usually 2 hours).
2. Dilute 1 to 10 into 250 ml of prewarmed (37°C) DSM in 2L flask. Incubate a further 48 hrs at 37°C and 150 rpm. Observe culture occasionally during growth, and continue to next step if >90% of culture are free spores.
3. Centrifuge the culture 10 min at 10,000xg and carefully discard the supernatant.
4. Wash the pellet with 200 ml of cold (4°C) sterile distilled water. Centrifuge for 10 min
at 10,000xg and again discard the supernatant.
5. Resuspend the pellet in 200 ml cold distilled water and leave at 4°C overnight.

Cloning: All our cloning was done with standard BioBrick cutsites. Our part was synthesized by IDT.

Spectrophotometry of spores for aeBlue Absorbance:

1. Determine spore concentration using microscopy and a hemocytometer.
2. Dilute spore suspensions to the same concentration (we used 1*10^9 cells/ml).
3. Add 200 µl of each sample into the wells of a 96 well plate.
4. Run a whole spectrum analysis.

CipA-cellulose binding assay using microscopy:

A - Cellulose Binding

1. Dilute spore suspensions to an equal concentration.
2. Spin down the spore suspensions and re-suspend in PBS.
3. Add 1.5 ml of spores PBS suspension to 2 ml tubes.
4. Cut a small piece of bacterial cellulose (BC) and add it to the 2 ml tubes containing the spores.
5. Let the 2 ml tubes sit for 1h at room temperature.

B - Washing and imaging

1. Fill 2 ml tubes with 1.5 ml PBS.
2. Take our the cellulose from the spore - PBS suspension and place in the new PBS 2 ml tubes
3. Slightly shake for 20 minutes.
4. Extract the cellulose and place in fume hood to dry.
5. Image through scanning electron microscopy.

See our Lab Notebook!

References

[1] Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6:7346 doi: 10.1038/ncomms8346 (2015).

[2] W. Nicholson & P. Setlow, in Molecular Biological Methods for Bacillus, eds. C. Harwood & S. Cutting, New York: John Wiley, pp.391-450, 1990.


Copyright © 2015 Stanford-Brown iGEM Team