|
|
(27 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | {{Freiburg}} | + | {{Freiburg/CSS}} |
| + | {{Freiburg/Menubar}} |
| <html> | | <html> |
− | | + | <meta http-equiv="refresh" content="0;URL='https://2015.igem.org/Team:Freiburg/Results/Modeling'" /> |
− | <script type="text/x-mathjax-config"> | + | |
− | MathJax.Hub.Config({
| + | |
− | displayAlign: "left"
| + | |
− | });
| + | |
− | </script>
| + | |
− | <script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
| + | |
− | </script>
| + | |
− | | + | |
− | <h2> Modeling</h2>
| + | |
− | | + | |
− | | + | |
− | <div class="highlightBox">
| + | |
− | <h4>Note</h4>
| + | |
− | <p>In order to be considered for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Best Model award</a>, you must fill out this page.</p>
| + | |
− | </div>
| + | |
− | | + | |
− | | + | |
− | <p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
| + | |
− | | + | |
− | <p>
| + | |
− | Here are a few examples from previous teams:
| + | |
− | </p>
| + | |
− | <ul>
| + | |
− | <li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
| + | |
− | <li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
| + | |
− | </ul>
| + | |
− | | + | |
− | <h2> Detailed System</h2>
| + | |
− | | + | |
− | <h3> Transcription</h3>
| + | |
− | | + | |
− | <h4> ODE System</h4>
| + | |
− | | + | |
− | <br>
| + | |
− | \[ tc0(1): \frac{dc^{RNAP}_{free}[t]}{dt}{ }= c^{RNAP}_{bound}[t] \cdot k^{RNAP}_{gain} - c^{RNAP}_{free}[t] \cdot k^{RNAP}_{loss} \]
| + | |
− | \[ \hphantom{tc0(1): \frac{dc^{RNAP}_{free}[t]}{dt} = } + c^{RNAP}_{sigma}[t] \cdot k^{sigma}_{off} - c^{RNAP}_{free}[t] \cdot c^{sigma}[t] \cdot k^{sigma}_{on} \]
| + | |
− | \[ \hphantom{tc0(1): \frac{dc^{RNAP}_{free}[t]}{dt} = } + c^{RNAP}_{elongter}[-1][t] \cdot k^{RNAP}_{diss} \]
| + | |
− | | + | |
− | <br>
| + | |
− | \[ tc0(2): \frac{dc^{sigma}[t]}{dt} = c^{sigma}_{bound}[t] \cdot k^{sigma}_{gain} - c^{sigma}[t] \cdot k^{sigma}_{loss} + c^{RNAPsigma}_{bound}[t] \cdot k^{sigma}_{off} \]
| + | |
− | \[ \hphantom{tc0(2): \frac{dc^{sigma}[t]}{dt} = } + c^{RNAP}_{sigma}[t] \cdot k^{sigma}_{off} - c^{RNAP}_{free}[t] \cdot c^{sigma}[t] \cdot k^{sigma}_{on} \]
| + | |
− | \[ \hphantom{tc0(2): \frac{dc^{sigma}[t]}{dt} = } + c^{RNAP}_{ini}[-1][t] \cdot k^{tc}_{prel} \]
| + | |
− | | + | |
− | <br>
| + | |
− | \[ tc0(3.1): \frac{dc^{RNAP}_{sigmaint}[t]}{dt} = c^{RNAP}_{free}[t] \cdot c^{sigma}[t] \cdot k^{sigma}_{on} - c^{RNAP}_{sigmaint}[t] \cdot k^{sigma}_{off} \]
| + | |
− | \[ \hphantom{tc0(3.1): \frac{dc^{RNAP}_{sigmaint}[t]}{dt} = } + c^{RNAP}_{sigma}[t] \cdot k^{RNAPsigma}_{isore} - c^{RNAP}_{sigmaint}[t] \cdot k^{RNAPsigma}_{iso} \]
| + | |
− | | + | |
− | <br>
| + | |
− | \[ tc0(3.2): \frac{dc^{RNAP}_{sigma}[t]}{dt} = c^{RNAPsigma}_{bound}[t] \cdot k^{RNAP}_{gain} \cdot c^{RNAP}_{sigma}[t] \cdot k^{RNAP}_{loss} \]
| + | |
− | \[ \hphantom{tc0(3.2): \frac{dc^{RNAP}_{sigma}[t]}{dt} = } + \sum \limits_{i=0}^n c^{RNAP}_{on}[i][t] \cdot k^{RNAP}_{off} - c^{RNAP}_{sigma}[t] \cdot p^{DNA} \cdot l^{DNA} \cdot k^{RNAP}_{on} \]
| + | |
− | \[ \hphantom {tc0(3.2): \frac{dc^{RNAP}_{sigma}[t]}{dt} = } + c^{RNAP}_{sigmaint}[t] \cdot k^{sigma}_{iso} - c^{RNAP}_{sigma}[t] \cdot k^{RNAPsigma}_{isore} \]
| + | |
− |
| + | |
− | tc0(4): \(dc^RNAP_on[i][t]/dt = c^RNAP_sigma[t] * p^DNA * k^RNAP_on
| + | |
− | + c^RNAP_on[i-v^RNAP_move * dt][t] * (1-k^RNAP_off) - c^RNAP_on[i][t] \)
| + | |
− | tc0(5): \(dc^RNAP_prom[t]/dt = sum \limits_{i=n-v^RNAP_move*dt}^n c^RNAP_on[i][t] * (1-k^RNAP_off)
| + | |
− | + c^RNAP_open[t] * k^tc_closed - c^RNAP_prom[t] * k^tc_open \)
| + | |
− | tc0(6): \(dc^RNAP_open[t]/dt = c^RNAP_prom[t] * k^tc_open - c^RNAP_open[t] * k^tc_closed
| + | |
− | + c^RNAP_ini[-1][t] * k^tc_iniab - c^RNAP_open[t] * c^ATP[t] * c^{X_1 TP}[t] * k^tc_ini1 \)
| + | |
− | tc0(7): \(dc^RNAP_ini1[t]/dt = c^RNAP_open[t] * c^ATP[t] * c^{X_1 TP}[t] * k^tc_ini1 - c^RNAP_ini1[t] * c^{X_2 TP}[t] * k^tc_inix \)
| + | |
− | | + | |
− | tc0(8.1): \(dc^RNAP_ini[i][t]/dt = c^RNAP_ini[i-1][t] * c^{X_i TP}[t] * k^tc_inix - c^RNAP_ini[i][t] * c^{X_i+1 TP}[t] * k^tc_inix,
| + | |
− | (i = 2, ..., l^ini-1) \)
| + | |
− | tc0(8.2): \(dc^RNAP_ini[1][t]/dt = dc^RNAP_ini1[t]/dt \)
| + | |
− | tc0(8.3): \(dc^RNAP_ini[-1][t]/dt = c^RNAP_ini[-2][t] * c^{X_-1 TP}[t] * k^tc_inix - c^RNAP_ini[-1][t] * (k^tc_iniab + k^tc_prel) \)
| + | |
− | | + | |
− | tc0(9): \(dc^RNAP_prel[t]/dt = c^RNAP_ini[-1][t] * k^tc_prel - c^RNAP_prel[t] * c^{X_1 TP}[t] * k^tc_elong \)
| + | |
− | | + | |
− | tc0(10.1): \(dc^RNAP_elong[i][t]/dt = c^RNAP_elong[i-1][t] * (1-prob^tc_mm) * c^{X_i TP}[t] * k^tc_elong
| + | |
− | - c^RNAP_elong[i][t] * ((1-prob^tc_mm) * c^{X_1 TP}[t] * k^tc_elong + prob^tc_mm * (c^NTPs[t] - c^{X_1 TP}[t]) * k^tc_elong)
| + | |
− | + c^RNAP_elongGreAB[j+l^mRNA_cl][t] * k^GreAB_cat,
| + | |
− | (i = 2, ..., l^elong-1 and j = i and j = 2, ..., l^elong - l^mRNA_cl) \)
| + | |
− | tc0(10.2): \(dc^RNAP_elong[1][t]/dt = c^RNAP_prel[t] * (1-prob^tc_mm) * c^{X_1 TP}[t] * k^tc_elong
| + | |
− | - c^RNAP_elong[1][t] * ((1-prob^tc_mm) * c^{X_1 TP}[t] * k^tc_elong + prob^tc_mm * (c^NTPs[t] - c^{X_1 TP}[t]) * k^tc_elong)
| + | |
− | + c^RNAP_elongGreAB[l^mRNA_cl][t] * k^GreAB_cat \)
| + | |
− | tc0(10.3): \(dc^RNAP_elong[-1][t]/dt = c^RNAP_elong[-2][t] * (1-prob^tc_mm) * c^{X_-1 TP}[t] * k^tc_elong
| + | |
− | - c^RNAP_elong[-1][t] * l^mRNA * c^pprot * k^pprot_on \)
| + | |
− | | + | |
− | tc0(11.1): \(d^cRNAP_elongter[i][t]/dt = (c^RNAP_elongter[i-1][t] - c^RNAP_elongter[i][t]) * c^ATP[t] * k^pprot_cat
| + | |
− | + c^RNAP_elong[i] * c^pprot * k^pprot_on,
| + | |
− | (i = 2, ..., l^mRNA-1) \)
| + | |
− | tc0(11.2): \(dc^RNAP_elongter[-1][t]/dt = c^RNAP_elongter[-2][t] * c^ATP[t] * k^pprot_cat - c^RNAP_elongter[-1][t] * k^RNAP_diss
| + | |
− | + c^RNAP_elong[-1][t] * c^pprot[t] * k^pprot_on \)
| + | |
− | | + | |
− | tc0(12): \(dc^mRNA[t]/dt = c^RNAP_elongter[-1][t] * k^RNAP_diss - c^RNAse_onmRNA[t] * k^RNAse_cat \)
| + | |
− | | + | |
− | tc0(13): \(dc^RNAP_elongmm[i][t]/dt = c^RNAP_elong[i-1][t] * prob^tc_mm * (c^NTPs[t] - c^{X_1 TP}[t] * k^tc_elong
| + | |
− | - c^RNAP_elongmm[i][t] * c^GreAB[t] * k^GreAB_on \)
| + | |
− | tc0(14): \(dc^RNAP_elongGreAB[i][t]/dt = c^RNAP_elongmm[i][t] * c^GreAB[t] * k^GreAB_on - c^RNAP_elongGreAB[i][t] * k^GreAB_cat \)
| + | |
− | | + | |
− | tc0(15): \(dc^RNAse[t]/dt = c^RNAse_bound[t] * k^RNAse_gain - c^RNAse[t] * k^RNAse_loss
| + | |
− | + (c^RNAse_onmRNAcl[t] + c^RNAse_onmRNAab[t] + c^RNAse_onmRNA[t]) * k^RNAse_cat
| + | |
− | - (c^mRNAcl[t] + c^mRNAab[t] + c^mRNA[t]) * c^RNAse[t] * k^RNAse_on \)
| + | |
− | tc0(16): \((dc^RNAse_onmRNA[t]/dt , dc^RNAse_onmRNAab[t]/dt , dc^RNAse_onmRNAcl[t]/dt)
| + | |
− | = c^RNAse[t] * (c^mRNA[t], c^mRNAab[t], c^mRNAcl[t]) * k^RNAse_on
| + | |
− | - (c^RNAse_onmRNA[t], c^RNAse_onmRNAab[t], c^RNAse_onmRNAcl[t]) * k^RNAse_cat \)
| + | |
− | tc0(17): \(dc^mRNAab[t]/dt = c^RNAP_ini[-1][t] * k^tc_iniab - c^RNAse_onmRNAab[t] * k^RNAse_cat \)
| + | |
− | tc0(18): \(dc^mRNAcl[t]/dt = sum \limits_{i=1}^n c^RNAP_elongGreAB[i][t] * k^GreAB_cat
| + | |
− | + 2 * c^RNAse_onmRNA[t] * k^RNAse_cat
| + | |
− | - c^RNAse_onmRNAcl[t] * k^RNAse_cat \)
| + | |
− |
| + | |
− | tc0(19.1): \(dc^entity_bound[t]/dt = c^entity[t] * k^entity_loss - c^entity_bound[t] * k^entity_gain,
| + | |
− | (entity not in {RNAP, RNAPsigma}) \)
| + | |
− | tc0(19.2): \((dc^RNAP_bound[t]/dt, dc^RNAPsigma_bound[t]/dt)
| + | |
− | = c^RNAP[t] * k^RNAP_loss - c^RNAP_bound[t] * k^RNAP_gain
| + | |
− | + (c^RNAPsigma_bound[t], -c^RNAPsigma_bound[t]) * k^sigma_off \)
| + | |
− |
| + | |
− | tc0(20): \(dc^pprot[t]/dt = c^pprot_bound[t] * k^pprot_gain - c^pprot[t] * k^pprot_loss
| + | |
− | + c^RNAP_elongter[-1][t] * k^RNAP_diss - c^RNAP_elong[-1][t] * l^mRNA * c^pprot[t] * k^pprot_on \)
| + | |
− | tc0(21): \(dc^GreAB[t]/dt = c^GreAB_bound[t] * k^GreAB_gain - c^GreAB[t] * k^GreAB_loss
| + | |
− | + sum \limits_{i=1}^n c^RNAP_elongGreAB[i][t] * k^GreAB_cat
| + | |
− | - sum \limits_{i=1}^n c^RNAP_elongmm[i][t] * c^GreAB[t] * k^GreAB_on \)
| + | |
− |
| + | |
− | tc0(22): \(dc^NTP[t]/dt = - sum \limits_{i=2, X_i=N}^n c^RNAP_ini[i-1][t] * c^{X_i TP}[t] * k^tc_inix
| + | |
− | - c^RNAP_prel[t] * (1-prob^tc_mm) * c^{X_1 TP}[t] * k^tc_elong
| + | |
− | - sum \limits_{i=2, X_i=N}^n-1 c^RNAP_elong[i-1][t] * (1-prob^tc_mm) * c^{X_i TP}[t] * k^tc_elong
| + | |
− | [- c^RNAP_open[t] * c^ATP[t] * c^X_1 TP[t] * k^tc_ini1]_{for X_1 = N}
| + | |
− | [-c^RNAP_open[t] * c^ATP[t] * c^NTP[t] * k^tc_ini1
| + | |
− | - sum \limits_{i=1}^n-1 c^RNAP_elongter[i][t] * c^ATP[t] * k^pprot_cat]_{for N = A} \)
| + | |
− | tc0(23): \(dc^NTPs[t]/dt = dc^ATP[t]/dt + dc^TTP[t]/dt + dc^GTP[t]/dt + dc^CTP[t]/dt \)
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
| </html> | | </html> |