Difference between revisions of "Team:Stanford-Brown/Parts"

(Undo revision 403111 by Daniel.kunin (talk))
 
(17 intermediate revisions by the same user not shown)
Line 20: Line 20:
 
   <div class="jumbotron oridomiLeft">
 
   <div class="jumbotron oridomiLeft">
 
     <div class="container">
 
     <div class="container">
       <h1>Our Biobricks<small> So many bricks<small></h1>
+
       <h1>Our Biobricks</h1>
      <p>See our bricks below!</p>
+
 
     </div><!--end container-->
 
     </div><!--end container-->
 
   </div><!-- end jumbotron-->
 
   </div><!-- end jumbotron-->
Line 27: Line 26:
 
   <div class="container">
 
   <div class="container">
  
     <h2>BioHYDRA BioBricks</h2>
+
      
 
+
    <div class="row">
+
 
+
      <div class="col-sm-6">
+
        <a href="http://parts.igem.org/Part:BBa_K1692028" class="btn" id="be1" target="_blank">
+
          <h4>Biobrick: BBa_K1692028</h4>
+
          <p><b>cotz-aeBlue-CipA</b>  a fusion protein consisting of a spore coat protein, cotZ (building off work done on Sporobeads by the LMU Munich 2012 iGEM team), and a cellulose binding domain (CipA). Additionally, we decided to add aeBlue, a chromogenic protein, between cotZ and CipA to be able to see with the naked eye whether <i>Bacillus</i> is in a vegetative or a spore state.  </p>
+
        </a>
+
      </div>
+
 
+
 
+
    </div><!-- end row -->
+
 
+
 
     <h2>Polystyrene Synthesis BioBricks</h2>
 
     <h2>Polystyrene Synthesis BioBricks</h2>
  
 
     <div class="row">
 
     <div class="row">
 
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
        <a href="http://parts.igem.org/Part:BBa_K1692000" class="btn" id="be1" target="_blank">
+
<a href="http://parts.igem.org/Part:BBa_K1692000" class="btn" id="be1" target="_blank">
          <h4>Biobrick: BBa_K1692000</h4>
+
          <h4>Biobrick: BBa_K1692000</h4>
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>Ferulic Acid Decarboxylase</b> Ferulic acid decarboxylase (FDC) catalyzes the conversion of trans-cinnamic acid to styrene. We isolated this genetic part from Saccharomyces cerevisiae and inserted the protein-coding sequence into the pSB1C3 backbone. The original sequence in yeast contains an SpeI restriction site in the 999th nucleotide position. Thus, we performed site-directed mutagenesis in order to make our part BioBrick compatible. Gene sequencing analysis confirmed that our site-directed mutagenesis was successful.
 +
</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
Line 55: Line 41:
 
         <a href="http://parts.igem.org/Part:BBa_K1692001" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692001" class="btn" id="be1" target="_blank">
 
           <h4>Biobrick: BBa_K1692001</h4>
 
           <h4>Biobrick: BBa_K1692001</h4>
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>Ferulic Acid Decarboxylase with T7 promoter</b> Ferulic acid decarboxylase (FDC) catalyzes the conversion of trans-cinnamic acid to styrene. We isolated this genetic part from Saccharomyces cerevisiae and inserted the protein-coding sequence into the pSB1C3 backbone. The original sequence in yeast contains an SpeI restriction site in the 999th nucleotide position. Thus, we performed site-directed mutagenesis in order to make our part BioBrick compatible. Gene sequencing analysis confirmed that our site-directed mutagenesis was successful.  This part includes a T7 promoter, allowing for inducible expression.</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
Line 61: Line 47:
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692002" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692002" class="btn" id="be1" target="_blank">
           <h4>Biobrick: BBa_K1692002</h4>
+
           <h4> Biobrick: BBa_K1692002</h4><img src="https://static.igem.org/mediawiki/2015/6/6a/SB2015_CraneLogoBlue.png" class="pull-left img-rounded img-responsive" width="35">
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>Codon-optimized Ferulic Acid Decarboxylase with T7 promoter and FLAG tag</b> Ferulic acid decarboxylase (FDC) catalyzes the conversion of trans-cinnamic acid to styrene. We codon-optimized the FDC gene from Saccharomyces cerevisiae for expression in E. coli. The decision to use FDC from S. cerevisiae was based on prior work in styrene biosynthesis, notably McKenna (2012). Our construct includes the FDC coding sequence, a T7 inducible promoter, a ribosome binding site, and a FLAG-tag peptide sequence for easy and efficient protein purification. We have sequenced our construct and verified that all these components are indeed present.
 +
</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
Line 69: Line 56:
 
         <a href="http://parts.igem.org/Part:BBa_K1692003" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692003" class="btn" id="be1" target="_blank">
 
           <h4>Biobrick: BBa_K1692003</h4>
 
           <h4>Biobrick: BBa_K1692003</h4>
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>PAL with T7 promoter</b> Phenylalanine ammonia lyase (PAL) catalyzes the conversion of L-phenylalanine to trans-cinnamic acid. This part is a modification of University of British Columbia’s 2013 PAL biobrick part (BBa_K1129003) from Streptomyces maritimus. Specifically, our part contains a T7 promoter, allowing for inducible expression.
 +
</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
 +
<div>
  
 +
<div class="pull-right">
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692004" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692004" class="btn" id="be1" target="_blank">
           <h4>Biobrick: BBa_K1692004</h4>
+
           <h4> Biobrick: BBa_K1692004</h4><img src="https://static.igem.org/mediawiki/2015/6/6a/SB2015_CraneLogoBlue.png" class="pull-left img-rounded img-responsive" width="35">
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>Codon-optimized PAL with T7 promoter and FLAG tag</b> Phenylalanine ammonia lyase (PAL) catalyzes the conversion of L-phenylalanine to trans-cinnamic acid. Our PAL construct is codon-optimized for expression in E. coli. The original sequence is derived from Anabaena variabilis. We chose the A. variabilis variant of PAL because the literature has characterized it as functioning well, in contrast to University of British Columbia’s 2013 PAL biobrick part (BBa_K1129003) from Streptomyces maritimus, which has much lower activity.  Our construct includes the PAL coding sequence, a T7 inducible promoter, a ribosome binding site, and a FLAG-tag peptide sequence for easy and efficient protein purification. We have sequenced our construct and verified that all these components are indeed present.
 +
</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
 
+
</div>
 +
<div class="row">
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692005" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692005" class="btn" id="be1" target="_blank">
 
           <h4>Biobrick: BBa_K1692005</h4>
 
           <h4>Biobrick: BBa_K1692005</h4>
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>UbiX</b> UbiX is a flavin prenyltransferase that normally plays a role in ubiquinone biosynthesis in E. coli. UbiX transfers a prenyl group from dimethylallyl monophosphate (DMAP) to flavin mononucleotide (FMN), thereby creating a cofactor that happens to be essential to the functionality of FDC. This part is contains the protein-coding UbiX sequence from E. coli.
 +
</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
Line 90: Line 83:
 
         <a href="http://parts.igem.org/Part:BBa_K1692006" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692006" class="btn" id="be1" target="_blank">
 
           <h4>Biobrick: BBa_K1692006</h4>
 
           <h4>Biobrick: BBa_K1692006</h4>
           <p><b>Ferulic acid decarboxylase</b> Ferulic Acid Decarboxylase is used to synthesize styrene from trans-cinnamic acid </p>
+
           <p><b>UbiX with T7 promoter</b> UbiX is a flavin prenyltransferase that normally plays a role in ubiquinone biosynthesis in E. coli. UbiX transfers a prenyl group from dimethylallyl monophosphate (DMAP) to flavin mononucleotide (FMN), thereby creating a cofactor that happens to be essential to the functionality of FDC. This part is contains the protein-coding UbiX sequence from E. coli. Additionally, this part includes a T7 promoter, allowing for inducible expression.
 +
</p>
 
         </a>
 
         </a>
 
       </div>       
 
       </div>       
Line 96: Line 90:
 
<div class="col-sm-6">
 
<div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692007" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692007" class="btn" id="be1" target="_blank">
           <h4>Biobrick: BBa_K1692007</h4>
+
           <h4> Biobrick: BBa_K1692007</h4><img src="https://static.igem.org/mediawiki/2015/6/6a/SB2015_CraneLogoBlue.png" class="pull-left img-rounded img-responsive" width="35">
           <p><b>UbiX with T7 promoter and FLAG tag</b> UbiX is a flavin prenyltransferase that normally plays a role in ubiquinone biosynthesis in <i>E. coli</i>. UbiX transfers a prenyl group from dimethylallyl monophosphate (DMAP) to flavin mononucleotide (FMN), thereby creating a cofactor that happens to be essential to the functionality of FDC. Our genetic construct includes the FDC gene, a T7 inducible promoter, a ribosome binding site, and a FLAG-tag peptide sequence for easy and efficient protein purification. We have sequenced our construct and verified that all these components are indeed present. </p>
+
           <p><b>UbiX with T7 promoter and FLAG tag</b> UbiX is a flavin prenyltransferase that normally plays a role in ubiquinone biosynthesis in E. coli. UbiX transfers a prenyl group from dimethylallyl monophosphate (DMAP) to flavin mononucleotide (FMN), thereby creating a cofactor that happens to be essential to the functionality of FDC. Our genetic construct includes the UbiX coding sequence, a T7 inducible promoter, a ribosome binding site, and a FLAG-tag peptide sequence for easy and efficient protein purification. We have sequenced our construct and verified that all these components are indeed present.</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
Line 103: Line 97:
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692008" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692008" class="btn" id="be1" target="_blank">
           <h4>Biobrick: BBa_K1692008</h4>
+
           <h4> Biobrick: BBa_K1692008</h4><img src="https://static.igem.org/mediawiki/2015/6/6a/SB2015_CraneLogoBlue.png" class="pull-left img-rounded img-responsive" width="35">
           <p><b>Styrene Synthesis Operon</b> Combo Plasmid containing a fusion protein of all three enzymes required to synthesise styrene from the starting organic reagent L-Phenylalanine.</p>
+
           <p><b>Styrene Synthesis Operon</b> This operon is a composite of three enzymes in the following order: FDC, UbiX, and PAL.  PAL converts phenylalanine to cinnamic acid.  FDC converts cinnamic acid to styrene.  UbiX modifies flavin mononucleotide to produce a cofactor that is required for FDC activity. The entire operon is controlled via an inducible T7 promoter. Each protein-coding sequence is preceded by a ribosome binding site and followed by a FLAG-tag peptide, enabling easy and efficient extraction.
 +
</p>
 
         </a>
 
         </a>
 
       </div>
 
       </div>
Line 124: Line 119:
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692034" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692034" class="btn" id="be1" target="_blank">
           <h4>Biobrick: BBa_K1692034</h4>
+
           <h4>Biobrick: BBa_K1692034</h4><img src="https://static.igem.org/mediawiki/2015/6/6a/SB2015_CraneLogoBlue.png" class="pull-left img-rounded img-responsive" width="35">
 
           <p><b>Pank + hybrid phaCAB + lysis</b> Construct that was cloned to have P(3HB) producing <i>E. coli</i> cells lyse when induced with Arabinose. This would greatly facilitate P(3HB) extraction. We are currently still testing and characterizing this part.  </p>
 
           <p><b>Pank + hybrid phaCAB + lysis</b> Construct that was cloned to have P(3HB) producing <i>E. coli</i> cells lyse when induced with Arabinose. This would greatly facilitate P(3HB) extraction. We are currently still testing and characterizing this part.  </p>
 
         </a>
 
         </a>
Line 146: Line 141:
 
     </div><!-- end row -->
 
     </div><!-- end row -->
  
 +
<h2>BioHYDRA BioBricks</h2>
 +
 +
    <div class="row">
 +
 +
      <div class="col-sm-6">
 +
        <a href="http://parts.igem.org/Part:BBa_K1692028" class="btn" id="be1" target="_blank">
 +
          <h4>Biobrick: BBa_K1692028</h4>
 +
          <p><b>cotz-aeBlue-CipA</b>  a fusion protein consisting of a spore coat protein, cotZ (building off work done on Sporobeads by the LMU Munich 2012 iGEM team), and a cellulose binding domain (CipA). Additionally, we decided to add aeBlue, a chromogenic protein, between cotZ and CipA to be able to see with the naked eye whether <i>Bacillus</i> is in a vegetative or a spore state.  </p>
 +
        </a>
 +
      </div>
 +
 +
 +
    </div><!-- end row -->
  
  
Line 168: Line 176:
 
       <div class="col-sm-6">
 
       <div class="col-sm-6">
 
         <a href="http://parts.igem.org/Part:BBa_K1692033" class="btn" id="be1" target="_blank">
 
         <a href="http://parts.igem.org/Part:BBa_K1692033" class="btn" id="be1" target="_blank">
           <h4>Biobrick : BBa_K1692033</h4>
+
           <h4>Biobrick : BBa_K1692033</h4><img src="https://static.igem.org/mediawiki/2015/6/6a/SB2015_CraneLogoBlue.png" class="pull-left img-rounded img-responsive" width="35">
 
           <p><b>RFP gDNA</b> This gene provides the intermediate for synthesizing gRNA targeting RFP (BBa_J04450). When used in conjuction with the CRISPR/Cas system, this gRNA will bind to and digest the RFP plasmid. </p>
 
           <p><b>RFP gDNA</b> This gene provides the intermediate for synthesizing gRNA targeting RFP (BBa_J04450). When used in conjuction with the CRISPR/Cas system, this gRNA will bind to and digest the RFP plasmid. </p>
 
         </a>
 
         </a>

Latest revision as of 03:19, 19 September 2015

Biobricks

Our Biobricks

Polystyrene Synthesis BioBricks

P(3HB) Synthesis BioBricks

BioHYDRA BioBricks

Cellulose Sheets BioBricks

CRATER Briobricks


Copyright © 2015 Stanford-Brown iGEM Team