Difference between revisions of "Team:Stanford-Brown/Cellulose"

 
(37 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 +
{{SB2015_NavBar}}
  
 
<html lang="en">
 
<html lang="en">
Line 14: Line 15:
  
 
</head>
 
</head>
<!-- NAVBAR
 
================================================== -->
 
<div class="container">
 
  <nav class="navbar navbar-material-light-blue navbar-fixed-top oriEdit">
 
  
    <div class="container">
 
 
      <div class="navbar-header">
 
 
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
 
 
          <span class="sr-only">Toggle navigation</span>
 
          <span class="icon-bar"></span>
 
          <span class="icon-bar"></span>
 
          <span class="icon-bar"></span>
 
 
        </button>
 
        <a class="navbar-brand" href="https://2015.igem.org/Team:Stanford-Brown">SB iGEM</a>
 
      </div>
 
 
      <div id="navbar" class="navbar-collapse collapse">
 
 
        <ul class="nav navbar-nav">
 
 
          <li class="active"><a href="https://2015.igem.org/Team:Stanford-Brown">Home</a></li>   
 
 
          <li class="dropdown">
 
            <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">About</a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Team">Our Team</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Attributions">Attributions</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Gallery">Picture Gallery</a></li>
 
            </ul>
 
          </li> 
 
 
          <li class="dropdown">
 
            <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">Outreach</a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Outreach">Outreach</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Practices">Human Practicies</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Collaboration">Collaboration</a></li>
 
            </ul>
 
          </li>
 
 
          <li class="dropdown">
 
            <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">Projects</a>
 
            <ul class="dropdown-menu">
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Projects">Project Overview</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Vision">The Vision</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Biobricks">BioBricks</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Notebooks">Notebooks and Protocols</a></li>
 
              <li class="divider"></li>
 
              <li class="dropdown-header">Sub-Projects</li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/PS">PS Synthesis</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/PHA">PHA Synthesis</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/CRATER">CRATER</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/CASH">CASH</a></li>
 
              <li><a href="https://2015.igem.org/Team:Stanford-Brown/Cellulose">Cellulose</a></li>
 
            </ul>
 
          </li>
 
        </ul>
 
      </div>
 
    </div>
 
  </nav>
 
</div>   
 
  
 
<div class="jumbotron oridomiLeft">
 
<div class="jumbotron oridomiLeft">
 
   <div class="container">
 
   <div class="container">
     <h1>Welcome to Cellulose<small> Write catchy subtitle description<small></h1>
+
     <h1>Welcome to Cellulose<small> microbial sheets<small></h1>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 93: Line 30:
 
<div class="container pp">
 
<div class="container pp">
  
<div class="row featurette">
+
   <div class="pull-right">
 
+
     <video poster="https://static.igem.org/mediawiki/2015/a/ad/O_6c8a88797bd8ec61-0.jpg" controls width="558" height="316">
   <div class="col-md-7">
+
      <source src="https://static.igem.org/mediawiki/2015/2/2e/Welcome_to_Cellulose.mp4" type='video/mp4'/>
     <h2 class="featurette-heading">Abstract<span class="small"> </span></h2>
+
      <a href="https://youtu.be/MtWHi1ih6MM"><img border="0" src="https://static.igem.org/mediawiki/2015/a/ad/O_6c8a88797bd8ec61-0.jpg" alt="Click to view on Youtube" width="558" height="316"></a>
    <p class="lead">We used the acetic acid bacterium Gluconacetobacter hansenii to produce bacterial cellulose. Because of its fibrous, tough, water-insoluble properties [1] we used bacterial cellulose as a substrate for biOrigami. After making the cellulose, we refine it into a flat, paper-like sheet using a DIY paper-making protocol. One unique aspect of cellulose is the existence of a class of proteins known as cellulose binding domains (CBDs) that can attach to a cellulose sheet. We design a universal CBD (uCBD) that allows for the attachment of any protein onto a cellulose sheet. The system involves fusing a CBD to a form of streptavidin; fusing the desired protein to a biotin acceptor; and adding biotin to the cell culture, causing the protein of interest to link to biotin, which then links to streptavidin and then to the cellulose sheet. Using our uCBD device, we can extend our self-folding system to serve additional functions, such a sensor for the detection of inorganic molecules, or binding enzymes to catalyze reactions on the surface of the sheet. We have contributed the BioBricks of our uCBD system to the registry. See our biobricks below: </p>
+
      <p style="font-style:italic;color:red;border-style:solid;border-width:2px;border-color:red">Your browser either does not support HTML5 or cannot handle MediaWiki open video formats. Please consider upgrading your browser, installing the appropriate plugin or switching to a Firefox or Chrome install.</p>
    <a href="https://2015.igem.org/Team:Stanford-Brown/Biobricks" class="btn btn-success btn-lg">See our BioBricks</a>
+
    </video>
 
   </div>
 
   </div>
 +
  <div class="row featurette">
 +
 +
    <div class="col-md-7">
 +
      <h2 class="featurette-heading">Abstract<span class="small"> </span></h2>
 +
      <p class="lead">We used the acetic acid bacterium <i>Gluconacetobacter hansenii </i> to produce bacterial cellulose. Because of its fibrous, tough, water-insoluble properties [1] bacterial cellulose is the perfect substrate for biOrigami. After making the cellulose, we refined it into a flat, paper-like sheet using a DIY paper-making protocol. One unique aspect of cellulose is the existence of a class of proteins known as cellulose binding domains (CBDs) that can attach to a cellulose sheet. We designed a universal CBD (uCBD) that allows for the attachment of any protein onto a cellulose sheet. Using our uCBD device, we can extend our self-folding system to serve additional functions, such a sensor for the detection of inorganic molecules, or binding enzymes to catalyze reactions on the surface of the sheet. We have contributed the BioBricks of our uCBD system to the registry. See our biobricks below: </p>
 +
      <a href="https://2015.igem.org/Team:Stanford-Brown/Parts" class="btn btn-success btn-lg">See our BioBricks</a>
 +
    </div>
 +
  
  <div class="col-md-5">
 
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
 
   </div>
 
   </div>
</div>
 
  
  
<div class="row featurette">
+
  <div class="row featurette">
  <div class="col-md-7 col-md-push-5">
+
    <div class="col-md-7 col-md-push-5">
    <h2 class="featurette-heading">Introduction<span class="small"> </span></h2>
+
      <h2 class="featurette-heading">Introduction<span class="small"> </span></h2>
    <p class="lead"> We use G. hansenii to produce cellulose as an alternative substrate for our biOrigami. Combine with cellulose binding domain and spore coat protein, cotZ, we can attach spores onto the cellulose surface for self-folding.</p>
+
      <p class="lead"> We used <i> G. hansenii </i> to produce cellulose as an alternative substrate for our biOrigami. Combine with cellulose binding domain and spore coat protein, cotZ, we could attach spores onto the cellulose surface for self-folding. Lastly, we collaborated with the Edinburgh 2015 IGEM team by providing them with cellulose sheets to test their protein sensors. You can learn more about the collaboration <a href="https://2015.igem.org/Team:Stanford-Brown/Collaborations">here</a></p>
 +
    </div>
 +
    <div class="col-md-5 col-md-pull-7">
 +
      <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/3/3b/SB2015_CelluloseFlask.jpeg" alt="Generic placeholder image">
 +
      <p> Fig. 1 Unprocessed cellulose before drying</p>
 +
    </div>
 
   </div>
 
   </div>
  <div class="col-md-5 col-md-pull-7">
 
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
  </div>
 
</div>
 
  
<p> Cellulose is a polysaccharide made up of the monomer, B-D glucose, linked by (1->4) glycosidic bond [1]. It is an important structural component of the plant cell walls and has been used in various textile applications such as paper production [2]. Cellulose is also produced by a Gram-negative bacterium, Gluconacetobacter hansenii, which secretes highly-crystalline cellulose [3]. Because of the few requirements needed to produce bacterial cellulose, G. hansenii is seen as a model organism for the study of cellulose synthesis in plants [3]. We grew a large culture of G. hansenii in growth medium to produce large batch of bacterial cellulose. After retrieving the cellulose from the medium, we used a paper-making protocol to turn them into cellulose sheets (see protocol below). The cellulose would be an important substrate for our biOrigami when combined with the spores to make bioHYDRAS (link to bioHYDRA page). We can use CBDs to attach the spores to the cellulose sheet. This can be accomplished by using a DNA linker connecting the CBD sequence to a protein expressed on the spore coat, Cotz. Since Cotz localizes to the spore coat, the hybrid Cotz-CBD will allow the spores to attach to the sheet. Furthermore, we can expand on the unique properties of this CBD to allow attachment of any protein onto a cellulose surface. We call our CBD system uCBD to note its universal protein attachment abilities. The system is inspired by the previous 2014 Stanford-Brown-Spelman iGEM team (link to page); however, it has several improvements. We used the cellulosomal-scaffolding protein A (cipA) of Clostridium thermocellum as our CBD. We chose cipA because of its high cellulose binding affinity (tested by the Imperial 2014 IGEM team) and improved on the Imperial cipA by removing the illegal EcoRI site within the gene.  CipA is attached to a monomeric streptavidin instead of the wild-type tetramer streptavidin to prevent the chance of protein aggregation, which can inhibit protein function [4]. We thus, sacrifice a small decrease in binding affinity from the monomeric streptavidin for an increase in functional activity of the overall hybrid protein. Together, the cipA + monomeric streptavidin gene made up the cellulose attachment part of our uCBD sytem (Part I). The second part of the system involves molecular cloning any protein of interest onto the bifunctional ligase/repressor (birA) protein attached to an acceptor peptide. BirA is found in e. coli and it catalyzes attachment of biotin onto the biotin acceptor peptide such as the Avitag [5]. Because the acceptor peptide is connected to the protein of interest, this protein can be extracted and purified from the cells and can then attach to Part I via streptavidin-biotin interaction. </p>
+
  <p> Cellulose is a polysaccharide made up of the monomer, B-D glucose, linked by (1->4) glycosidic bond [1]. It is an important structural component of the plant cell walls and has been used in various textile applications such as paper production [2]. Cellulose is also produced by a Gram-negative bacterium, <i>Gluconacetobacter hansenii</i>, which secretes highly-crystalline cellulose [3]. Because of the few requirements needed to produce bacterial cellulose, <i> G. hansenii </i> is seen as a model organism for the study of cellulose synthesis in plants [3]. We grew a large culture of <i> G. hansenii </i> in growth medium to produce large batch of bacterial cellulose. After retrieving the cellulose from the medium, we used a paper-making protocol to turn them into cellulose sheets (see protocol below). The cellulose would be an important substrate for our biOrigami when combined with the spores to make bioHYDRAS <a href="https://2015.igem.org/Team:Stanford-Brown/Collaborations"> link here </a>. We can use CBDs to attach the spores to the cellulose sheet. This can be accomplished by using a DNA linker connecting the CBD sequence to a protein expressed on the spore coat, Cotz. Since Cotz localizes to the spore coat, the hybrid Cotz-CBD will allow the spores to attach to the sheet. Furthermore, we can expand on the unique properties of this CBD to allow attachment of any protein onto a cellulose surface. We call our CBD system uCBD to note its universal protein attachment abilities. <br> <br>
  
 +
    The system is inspired by the <a href="https://2014.igem.org/Team:StanfordBrownSpelman/Cellulose_Cross_Linker"> 2014 Stanford-Brown-Spelman iGEM team </a>; however, it has several improvements. We used the cellulosomal-scaffolding protein A (cipA) of <i> Clostridium thermocellum </i> as our CBD. We chose cipA because of its high cellulose binding affinity (tested by the Imperial 2014 IGEM team); furthermore, we improved on the Imperial cipA by removing the illegal EcoRI site within the gene. CipA is attached to a monomeric streptavidin instead of the wild-type tetramer streptavidin to prevent the chance of protein aggregation, which can inhibit protein function [4]. We thus, sacrifice a small decrease in binding affinity from the monomeric streptavidin for an increase in functional activity of the overall hybrid protein. Together, the monomeric streptavidin and cipa (mSA-cipA) gene made up the cellulose attachment part of our uCBD sytem (Part I). The second part of the system involves molecular cloning any protein of interest onto the bifunctional ligase/repressor (birA) protein attached to an acceptor peptide. BirA is found in <i> E. coli </i> and it catalyzes attachment of biotin onto the biotin acceptor peptide such as the Avitag [5]. Because the acceptor peptide is connected to the protein of interest, this protein can be extracted and purified from the cells and can then attach to Part I via streptavidin-biotin interaction. The overall second construct would be called protein of interest-birA (POI-birA) </p>
  
<div class="row featurette">
 
  <div class="col-md-7">
 
    <h2 class="featurette-heading">Experiment <span class="small">Engineering E. coli to produce polystyrene</span></h2>
 
    <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 
  </div>
 
  <div class="col-md-1"></div>
 
  <div class="col-md-4">
 
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
  </div>
 
</div>
 
  
<p>Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex.
+
    <div class="row featurette">
 +
      <div class="col-md-7 col-md-push-5">
 +
        <h2 class="featurette-heading">Data and Results <span class="small"></span></h2>
 +
        <p class="lead">
 +
        </p>
 +
      </div>
 +
      <div class="col-md-5 col-md-pull-7">
 +
        <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/4/49/CelluloseSheet1.jpeg" alt="Generic placeholder image">
 +
        <p> Fig. 2 Unprocessed cellulose after drying
 +
        </div>
 +
      </div>
  
  Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim.
+
      <p> We made bacterial cellulose using <i> G. hansenii </i> and processed them into flat cellulose sheet. We also designed and cloned the mSA-cipA and POI-birA into NEB-5 alpha competent <i> E. coli </i>. Sequencing result was consistent for mSA-cipA; however, our cloning for POI-birA was unsuccessful. This was because of a PstI site within the gene that caused difficulty in cloning. We also did protein extraction of the mSA-cipA construct; however, the gel  did not show the presence of the protein band. We believed that this was due to a problem with the Flag affinity purification. In conclusion, we made bacterial cellulose and processed it into flat sheet. We also managed to clone and verify the sequence for mSA-cipA. Our future goal is to successfully clone the POI-birA gene and extract proteins from these two genes. Lastly, we will do functional testing by doing binding affinity assay of the cellulose binding domain and the streptavidin-biotin complex. <br><br>
 +
      </p> 
 +
      <img src="https://static.igem.org/mediawiki/2015/2/26/SB2015_CelluloseBeforeandAfter.jpeg" width = "444" length = "626"alt="Generic placeholder image"><br>
 +
      <p>Fig. 3 bottom: Processed Cellulose, top: Unprocessed</p><br>
  
  Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros.
 
  
  Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis.
 
  
  Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.</p>
+
      <h2>Protocols</h2>
  
 +
      <h3> Cellulose Sheets </h3>
  
  <div class="row featurette">
+
      <p> <b>Cellulose Production</b>: We produced cellulose using <i>Gluconobacter hansenii</i>, the bacterium known to provide the highest cellulose yield (Ross et al, 1991). To produce cellulose from <i>G. hansenii</i>, we used the 2014 Stanford-Brown-Spelman iGEM team’s protocol, as below, with one slight modification – the addition of fructose to promote cellulose production (Embuscado, Marks & BeMiller, 1994).</p>
    <div class="col-md-7 col-md-push-5">
+
 
       <h2 class="featurette-heading">Data and Results <span class="small">Optimizing the production of biological PHA</span></h2>
+
       <p>Modified <i>Acetobacter xylinum</i> medium recipe (makes 500 mL media, see <a href="http://openwetware.org/wiki/Acetobacter_Xylinum_Culture">original source</a>):</p>
       <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
 
    </div>
+
       <ul>
    <div class="col-md-5 col-md-pull-7">
+
        <li>25g Fructose</li>
      <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
        <li>10g Glucose</li>
    </div>
+
        <li>2.5g Tryptone (or peptone)</li>
  </div>
+
        <li>2.5g Yeast Extract</li>
 +
        <li>1.35g Na2HPO4</li>
 +
        <li>0.75g Citric Acid</li>
 +
        <li>500mL Water</li>
 +
      </ul>
  
  <p>Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex.
+
      <p>Inoculate with <i>G. hansenii</i> culture and incubate at room temperature for up to one week or until desired volume is achieved.</p>
  
    Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim.
+
      <p><b>Troubleshooting tips:</b></p>
 +
      <p>Contamination - When producing cellulose in large vats, contamination by fungi or bacteria can become a major issue.</p>
 +
      <p>Recommendations - </p>
 +
      <ul>
 +
        <li>Be certain to work with <i>G. hansenii</i> in the hood and to thoroughly seal the vats.  
 +
          <li>You can also try adding an antifungal that will not act upon bacteria to the medium.
 +
            <li>The strain of <i>G. hansenii</i> we are using has some resistance to kanamycin, so you could perhaps try adding that. Wild-type bacteria sometimes have natural resistance to certain antibiotics, so we ran a quick experiment to see if <i>G. hansenii</i> is resistant to any of the antibiotics in our lab. There was some growth in the kanamycin plates / cultures – however, it was too slow to merit the addition of kanamycin to all cultures.
 +
              <li>You could also try transforming the <i>G. hansenii</i> via electroporation (see 2014’s adapted <i>Acetobacter</i> transformation protocol <a href="https://static.igem.org/mediawiki/2014/1/1e/Protocols.pdf">here</a>).
 +
                <li>If all else fails, you could grow <i>G. hansenii</i> in a large (and we mean LARGE) Erlenmeyer flask. This significantly reduces risk of contamination, although surface area is limited.
 +
                </ul>
  
    Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros.
+
                <p>No growth – The cellulose has stopped growing after a while.</p>
 +
                <p>Recommendation - If cellulose is no longer being produced, try adding extra glucose/fructose. Bacteria can’t make cellulose out of thin air!</p>
  
    Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis.
+
                <p> <b>Cellulose Processing</b>: By solving key issues in cellulose processing, we hope to expand the possibilities of microbial cellulose. We identified brittleness to be the major problem, given that it results in poor flexibility (especially bad for folding) and limited strength of material. Additionally, we theorized that breaking down residual cell components could improve cellulose binding and sheet color. After an investigation spanning from literature reviews to DIY paper making forums, we decided to use glycerol to greatly enhance flexibility and integrity, as well as acetic acid to gently remove extraneous cell structures and pigments from the cellulose.
 +
                </p>
  
    Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.</p>
+
                <p>Here is the protocol we developed to process cellulose sheets:</p>
 +
                <ol>
 +
                  <li>Soak in acetic acid for one hour.</li>
 +
                  <li>Wash with ddH2O a few times.</li>
 +
                  <li>Soak in glycerol for one hour.</li>     
 +
                  <li>Separate layers for thinner sheets, if desired. (Applying friction to the sheets with a gloved hand should lead to separation of sheets from each other. If not, and thinner sheets are desired, cut down one end of the sheet and then pull apart.)</li>
 +
                  <li>Soak in glycerol again briefly (~5 min).</li>
 +
                  <li>Dry sheets on cardstock and paper towels. Place heavy object on top to flatten sheet and speed absorption.</li>
 +
                </ol>
  
    <a href="https://2015.igem.org/Team:Stanford-Brown/Gallery" class="btn btn-warning btn-lg">See our Picture Gallery!</a>
+
                <h3>Cellulose Binding Domains</h3>
  
    <h2>Protocols</h2>
+
                <p> <b>Transformation</b>: Chemically and electrocompetent NEB-5 alpha <i> E. coli </i> cells from New England Biolabs were used for all parts of this project. Protocols were followed according to the manufactur's instructions. Plates containing successful transformants were stored at 4C.  <br><br>
 +
                <b> Growing Culture </b>. Transformed cells were inoculated into 3 ml Lysogeny Broth (LB) medium supplemented with chloramphenicol and shaken at 37C for 24 hours. Growing culture for protein purification were inoculated in 100 ml LB medium instead. <br><br>
 +
                <b> Molecular Cloning </b> The parts were synthesized by IDT and cloning was done with the standard BioBrick cutsites. <br><br>
 +
                <b> Flag-tag Protein Purification </b> We used the FLAG octapeptide and Anti-FLAG M2 magnetic beads to extract protein products from the bacteria. Look here for the full <a href="https://static.igem.org/mediawiki/2015/c/c5/M8823bul.pdf"> protocol. </a>  </p>
  
    <p>Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor.
+
                <a href="https://static.igem.org/mediawiki/2015/0/09/SB2015_CelluloseLabNotebook2.pdf" class="btn btn-danger btn-lg">See our Lab Notebook!</a>
      <p>Duis nec nibh non nisl tristique condimentum quis eu leo.</p>
+
      <p>Sed venenatis massa in tortor gravida dictum.</p>
+
      Nam sollicitudin enim ac egestas fermentum.
+
      Suspendisse tempor urna vel mollis mollis.
+
      Proin ac mauris facilisis sapien maximus suscipit nec eget felis.
+
      Fusce ac urna sit amet nunc condimentum gravida.
+
      Aenean commodo nunc et tempus egestas.
+
      Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis.
+
      Curabitur et erat non justo eleifend commodo.
+
      In sit amet sem vitae eros placerat facilisis.
+
      Quisque eget ligula vel tellus fermentum vestibulum.
+
      Curabitur eu ligula non lorem pulvinar posuere ac commodo ante.
+
      Sed convallis quam ut risus dignissim, nec pellentesque risus malesuada.
+
      Vestibulum vel sem eu tortor ornare consequat ac eget ligula.
+
      Suspendisse eu lacus ut nisi aliquet mollis id nec eros.
+
      Integer vulputate sem sed massa porta, eget dapibus odio pellentesque.
+
      Morbi sit amet lacus quis urna mattis elementum.</p>
+
  
      <a href="https://2015.igem.org/Team:Stanford-Brown/Notebooks" class="btn btn-danger btn-lg">See our Lab Notebook!</a>
+
                <h2>References</h2>
  
      <h2>References</h2>
+
                <p>[1] O’Sullivan, A.C. 1997. Cellulose: the structure slowly unravels. Cellulose 4(3): 173-207. <br>
 +
                  [2] Senese, Fred. “What is Cellulose?” General Chemistry Online. N.p., n.d. Web. 18 Sept. 2015. <br>
 +
                  [3] Lyer et al. 2010. Genome Sequence of a Cellulose-Producing Bacterium, Gluconacetobacter hansenii ATCC 23769. J Bacteriol 192(16): 4256-4257. <br>
 +
                  [4] Lim et al. 2013. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnology and Bioengineering 110(1): 57-67. <br>
 +
                  [5] Kay et al. 2009. High-throughput Biotinylation of Proteins. Methods Mol Biol 498:185-196.
 +
                </p>
  
      <p>Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor.
 
        Duis nec nibh non nisl tristique condimentum quis eu leo.
 
        Sed venenatis massa in tortor gravida dictum.
 
        Nam sollicitudin enim ac egestas fermentum.
 
        Suspendisse tempor urna vel mollis mollis.
 
        Proin ac mauris facilisis sapien maximus suscipit nec eget felis.
 
        Fusce ac urna sit amet nunc condimentum gravida.
 
        Aenean commodo nunc et tempus egestas.
 
        Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis.
 
        Curabitur et erat non justo eleifend commodo.
 
        In sit amet sem vitae eros placerat facilisis.
 
        Quisque eget ligula vel tellus fermentum vestibulum.p>
 
  
      </div><!-- /.container -->
+
              </div><!-- /.container -->
      <!-- /END THE FEATURETTES -->
+
              <!-- /END THE FEATURETTES -->
  
      <footer>
+
              <footer>
        <div class="container">
+
                <div class="container">
          <hr></hr>
+
                  <hr></hr>
          <div class="row">
+
                  <div class="row">
            <h6>Copyright &copy; 2015 Stanford-Brown iGEM Team</h6>
+
                    <h6>Copyright &copy; 2015 Stanford-Brown iGEM Team</h6>
          </div><!-- end row -->
+
                  </div><!-- end row -->
        </div><!-- end container -->
+
                </div><!-- end container -->
      </footer>
+
              </footer>
  
 
<!-- Bootstrap core JavaScript
 
<!-- Bootstrap core JavaScript

Latest revision as of 03:44, 19 September 2015

SB iGEM 2015

Welcome to Cellulose microbial sheets

Abstract

We used the acetic acid bacterium Gluconacetobacter hansenii to produce bacterial cellulose. Because of its fibrous, tough, water-insoluble properties [1] bacterial cellulose is the perfect substrate for biOrigami. After making the cellulose, we refined it into a flat, paper-like sheet using a DIY paper-making protocol. One unique aspect of cellulose is the existence of a class of proteins known as cellulose binding domains (CBDs) that can attach to a cellulose sheet. We designed a universal CBD (uCBD) that allows for the attachment of any protein onto a cellulose sheet. Using our uCBD device, we can extend our self-folding system to serve additional functions, such a sensor for the detection of inorganic molecules, or binding enzymes to catalyze reactions on the surface of the sheet. We have contributed the BioBricks of our uCBD system to the registry. See our biobricks below:

See our BioBricks

Introduction

We used G. hansenii to produce cellulose as an alternative substrate for our biOrigami. Combine with cellulose binding domain and spore coat protein, cotZ, we could attach spores onto the cellulose surface for self-folding. Lastly, we collaborated with the Edinburgh 2015 IGEM team by providing them with cellulose sheets to test their protein sensors. You can learn more about the collaboration here

Generic placeholder image

Fig. 1 Unprocessed cellulose before drying

Cellulose is a polysaccharide made up of the monomer, B-D glucose, linked by (1->4) glycosidic bond [1]. It is an important structural component of the plant cell walls and has been used in various textile applications such as paper production [2]. Cellulose is also produced by a Gram-negative bacterium, Gluconacetobacter hansenii, which secretes highly-crystalline cellulose [3]. Because of the few requirements needed to produce bacterial cellulose, G. hansenii is seen as a model organism for the study of cellulose synthesis in plants [3]. We grew a large culture of G. hansenii in growth medium to produce large batch of bacterial cellulose. After retrieving the cellulose from the medium, we used a paper-making protocol to turn them into cellulose sheets (see protocol below). The cellulose would be an important substrate for our biOrigami when combined with the spores to make bioHYDRAS link here . We can use CBDs to attach the spores to the cellulose sheet. This can be accomplished by using a DNA linker connecting the CBD sequence to a protein expressed on the spore coat, Cotz. Since Cotz localizes to the spore coat, the hybrid Cotz-CBD will allow the spores to attach to the sheet. Furthermore, we can expand on the unique properties of this CBD to allow attachment of any protein onto a cellulose surface. We call our CBD system uCBD to note its universal protein attachment abilities.

The system is inspired by the 2014 Stanford-Brown-Spelman iGEM team ; however, it has several improvements. We used the cellulosomal-scaffolding protein A (cipA) of Clostridium thermocellum as our CBD. We chose cipA because of its high cellulose binding affinity (tested by the Imperial 2014 IGEM team); furthermore, we improved on the Imperial cipA by removing the illegal EcoRI site within the gene. CipA is attached to a monomeric streptavidin instead of the wild-type tetramer streptavidin to prevent the chance of protein aggregation, which can inhibit protein function [4]. We thus, sacrifice a small decrease in binding affinity from the monomeric streptavidin for an increase in functional activity of the overall hybrid protein. Together, the monomeric streptavidin and cipa (mSA-cipA) gene made up the cellulose attachment part of our uCBD sytem (Part I). The second part of the system involves molecular cloning any protein of interest onto the bifunctional ligase/repressor (birA) protein attached to an acceptor peptide. BirA is found in E. coli and it catalyzes attachment of biotin onto the biotin acceptor peptide such as the Avitag [5]. Because the acceptor peptide is connected to the protein of interest, this protein can be extracted and purified from the cells and can then attach to Part I via streptavidin-biotin interaction. The overall second construct would be called protein of interest-birA (POI-birA)

Data and Results

Generic placeholder image

Fig. 2 Unprocessed cellulose after drying

We made bacterial cellulose using G. hansenii and processed them into flat cellulose sheet. We also designed and cloned the mSA-cipA and POI-birA into NEB-5 alpha competent E. coli . Sequencing result was consistent for mSA-cipA; however, our cloning for POI-birA was unsuccessful. This was because of a PstI site within the gene that caused difficulty in cloning. We also did protein extraction of the mSA-cipA construct; however, the gel did not show the presence of the protein band. We believed that this was due to a problem with the Flag affinity purification. In conclusion, we made bacterial cellulose and processed it into flat sheet. We also managed to clone and verify the sequence for mSA-cipA. Our future goal is to successfully clone the POI-birA gene and extract proteins from these two genes. Lastly, we will do functional testing by doing binding affinity assay of the cellulose binding domain and the streptavidin-biotin complex.

Generic placeholder image

Fig. 3 bottom: Processed Cellulose, top: Unprocessed


Protocols

Cellulose Sheets

Cellulose Production: We produced cellulose using Gluconobacter hansenii, the bacterium known to provide the highest cellulose yield (Ross et al, 1991). To produce cellulose from G. hansenii, we used the 2014 Stanford-Brown-Spelman iGEM team’s protocol, as below, with one slight modification – the addition of fructose to promote cellulose production (Embuscado, Marks & BeMiller, 1994).

Modified Acetobacter xylinum medium recipe (makes 500 mL media, see original source):

  • 25g Fructose
  • 10g Glucose
  • 2.5g Tryptone (or peptone)
  • 2.5g Yeast Extract
  • 1.35g Na2HPO4
  • 0.75g Citric Acid
  • 500mL Water

Inoculate with G. hansenii culture and incubate at room temperature for up to one week or until desired volume is achieved.

Troubleshooting tips:

Contamination - When producing cellulose in large vats, contamination by fungi or bacteria can become a major issue.

Recommendations -

  • Be certain to work with G. hansenii in the hood and to thoroughly seal the vats.
  • You can also try adding an antifungal that will not act upon bacteria to the medium.
  • The strain of G. hansenii we are using has some resistance to kanamycin, so you could perhaps try adding that. Wild-type bacteria sometimes have natural resistance to certain antibiotics, so we ran a quick experiment to see if G. hansenii is resistant to any of the antibiotics in our lab. There was some growth in the kanamycin plates / cultures – however, it was too slow to merit the addition of kanamycin to all cultures.
  • You could also try transforming the G. hansenii via electroporation (see 2014’s adapted Acetobacter transformation protocol here).
  • If all else fails, you could grow G. hansenii in a large (and we mean LARGE) Erlenmeyer flask. This significantly reduces risk of contamination, although surface area is limited.

No growth – The cellulose has stopped growing after a while.

Recommendation - If cellulose is no longer being produced, try adding extra glucose/fructose. Bacteria can’t make cellulose out of thin air!

Cellulose Processing: By solving key issues in cellulose processing, we hope to expand the possibilities of microbial cellulose. We identified brittleness to be the major problem, given that it results in poor flexibility (especially bad for folding) and limited strength of material. Additionally, we theorized that breaking down residual cell components could improve cellulose binding and sheet color. After an investigation spanning from literature reviews to DIY paper making forums, we decided to use glycerol to greatly enhance flexibility and integrity, as well as acetic acid to gently remove extraneous cell structures and pigments from the cellulose.

Here is the protocol we developed to process cellulose sheets:

  1. Soak in acetic acid for one hour.
  2. Wash with ddH2O a few times.
  3. Soak in glycerol for one hour.
  4. Separate layers for thinner sheets, if desired. (Applying friction to the sheets with a gloved hand should lead to separation of sheets from each other. If not, and thinner sheets are desired, cut down one end of the sheet and then pull apart.)
  5. Soak in glycerol again briefly (~5 min).
  6. Dry sheets on cardstock and paper towels. Place heavy object on top to flatten sheet and speed absorption.

Cellulose Binding Domains

Transformation: Chemically and electrocompetent NEB-5 alpha E. coli cells from New England Biolabs were used for all parts of this project. Protocols were followed according to the manufactur's instructions. Plates containing successful transformants were stored at 4C.

Growing Culture . Transformed cells were inoculated into 3 ml Lysogeny Broth (LB) medium supplemented with chloramphenicol and shaken at 37C for 24 hours. Growing culture for protein purification were inoculated in 100 ml LB medium instead.

Molecular Cloning The parts were synthesized by IDT and cloning was done with the standard BioBrick cutsites.

Flag-tag Protein Purification We used the FLAG octapeptide and Anti-FLAG M2 magnetic beads to extract protein products from the bacteria. Look here for the full protocol.

See our Lab Notebook!

References

[1] O’Sullivan, A.C. 1997. Cellulose: the structure slowly unravels. Cellulose 4(3): 173-207.
[2] Senese, Fred. “What is Cellulose?” General Chemistry Online. N.p., n.d. Web. 18 Sept. 2015.
[3] Lyer et al. 2010. Genome Sequence of a Cellulose-Producing Bacterium, Gluconacetobacter hansenii ATCC 23769. J Bacteriol 192(16): 4256-4257.
[4] Lim et al. 2013. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnology and Bioengineering 110(1): 57-67.
[5] Kay et al. 2009. High-throughput Biotinylation of Proteins. Methods Mol Biol 498:185-196.


Copyright © 2015 Stanford-Brown iGEM Team