Difference between revisions of "Team:Stanford-Brown/Projects"

 
(82 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Stanford-Brown/CSS}}
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/bootstrap}}
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/pfold}}
 
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 +
{{SB2015_NavBar}}
  
 
<html lang="en">
 
<html lang="en">
  <head>
+
<head>
    <meta charset="utf-8">
+
  <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
+
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1">
+
  <meta name="viewport" content="width=device-width, initial-scale=1">
    <!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
+
  <!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
    <meta name="description" content="">
+
  <meta name="description" content="">
    <meta name="author" content="">
+
  <meta name="author" content="">
    <link rel="icon" href="../../favicon.ico">
+
  <link rel="icon" href="../../favicon.ico">
  
    <title>Carousel Template for Bootstrap</title>
+
  <title>Projects</title>
  
 +
</head>
  
 +
<body>
  
    <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
+
  <div class="jumbotron oridomiLeft">
    <!--[if lt IE 9]>
+
    <div class="container">
      <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
+
      <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+
    <![endif]-->
+
  
    <!-- Custom styles for this template -->
+
      <div class="col-lg-8">
    <link href="http://getbootstrap.com/examples/carousel/carousel.css" rel="stylesheet">
+
        <h1>Project Overview<small> <br>biOrigami for Manufacturing in Space<small></h1>     
  </head>
+
      </div>
<!-- NAVBAR
+
        <img class="featurette-image img-responsive center-block img-rounded head123" src="https://static.igem.org/mediawiki/2015/0/0e/SB2015_ProjectOverview.png" alt="Project Overview">
================================================== -->
+
    </div><!--end container-->
   <body>
+
   </div><!-- end jumbotron-->
    <div class="navbar-wrapper">
+
      <div class="container">
+
  
        <nav class="navbar navbar-inverse navbar-fixed-top">
+
</div><!-- end jumbotron-->
          <div class="container">
+
            <div class="navbar-header">
+
              <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
+
                <span class="sr-only">Toggle navigation</span>
+
                <span class="icon-bar"></span>
+
                <span class="icon-bar"></span>
+
                <span class="icon-bar"></span>
+
              </button>
+
              <a class="navbar-brand" href="#">Project name</a>
+
            </div>
+
            <div id="navbar" class="navbar-collapse collapse">
+
              <ul class="nav navbar-nav">
+
                <li class="active"><a href="#">Home</a></li>
+
                <li><a href="#about">About</a></li>
+
                <li><a href="#contact">Contact</a></li>
+
                <li class="dropdown">
+
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Dropdown <span class="caret"></span></a>
+
                  <ul class="dropdown-menu">
+
                    <li><a href="#">Action</a></li>
+
                    <li><a href="#">Another action</a></li>
+
                    <li><a href="#">Something else here</a></li>
+
                    <li role="separator" class="divider"></li>
+
                    <li class="dropdown-header">Nav header</li>
+
                    <li><a href="#">Separated link</a></li>
+
                    <li><a href="#">One more separated link</a></li>
+
                  </ul>
+
                </li>
+
              </ul>
+
            </div>
+
          </div>
+
        </nav>
+
  
      </div>
+
<!-- START THE FEATURETTES -->
    </div>
+
  
    <!-- Carousel
+
<div class="container">
    ================================================== -->
+
    <div id="myCarousel" class="carousel slide" data-ride="carousel">
+
      <!-- Indicators -->
+
      <ol class="carousel-indicators">
+
        <li data-target="#myCarousel" data-slide-to="0" class="active"></li>
+
        <li data-target="#myCarousel" data-slide-to="1"></li>
+
        <li data-target="#myCarousel" data-slide-to="2"></li>
+
      </ol>
+
      <div class="carousel-inner" role="listbox">
+
        <div class="item active">
+
          <img class="first-slide" src="" alt="First slide">
+
          <div class="container">
+
            <div class="carousel-caption">
+
              <h1>Example headline.</h1>
+
              <p>Note: If you're viewing this page via a <code>file://</code> URL, the "next" and "previous" Glyphicon buttons on the left and right might not load/display properly due to web browser security rules.</p>
+
              <p><a class="btn btn-lg btn-primary" href="#" role="button">Sign up today</a></p>
+
            </div>
+
          </div>
+
        </div>
+
        <div class="item">
+
          <img class="second-slide" src="" alt="Second slide">
+
          <div class="container">
+
            <div class="carousel-caption">
+
              <h1>Another example headline.</h1>
+
              <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Donec id elit non mi porta gravida at eget metus. Nullam id dolor id nibh ultricies vehicula ut id elit.</p>
+
              <p><a class="btn btn-lg btn-primary" href="#" role="button">Learn more</a></p>
+
            </div>
+
          </div>
+
        </div>
+
        <div class="item">
+
          <img class="third-slide" src="" alt="Third slide">
+
          <div class="container">
+
            <div class="carousel-caption">
+
              <h1>One more for good measure.</h1>
+
              <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Donec id elit non mi porta gravida at eget metus. Nullam id dolor id nibh ultricies vehicula ut id elit.</p>
+
              <p><a class="btn btn-lg btn-primary" href="#" role="button">Browse gallery</a></p>
+
            </div>
+
          </div>
+
        </div>
+
      </div>
+
      <a class="left carousel-control" href="#myCarousel" role="button" data-slide="prev">
+
        <span class="glyphicon glyphicon-chevron-left" aria-hidden="true"></span>
+
        <span class="sr-only">Previous</span>
+
      </a>
+
      <a class="right carousel-control" href="#myCarousel" role="button" data-slide="next">
+
        <span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span>
+
        <span class="sr-only">Next</span>
+
      </a>
+
    </div><!-- /.carousel -->
+
  
      <!-- START THE FEATURETTES -->
+
<div class="row featurette">
  
       <hr class="featurette-divider">
+
  <div class="row featurette">
 +
    <div class="" id="">
 +
       <h2 class="featurette-heading">Our Vision<span class="small"> <br>To create biOrigami: self-folding, biological origami for space missions</span></h2>
 +
      <p class="lead">Space exploration lies at the inquisitive core of human nature, yet high costs hinder the advancement of this frontier. We are harnessing the replicative properties of biology to create biOrigami—biological, self-folding origami—to reduce the mass, volume, and assembly time of materials needed for space missions. biOrigami consists of two main components: manufacturing substrates biologically and bioengineering folding mechanisms. For substrates, we are developing new BioBricks to synthesize two thermoplastics: polystyrene and polyhydroxyalkanoates. For folding mechanisms, we are using heat-induced contraction of thermoplastics and the contractile properties of bacterial spores. After consulting with experts, we believe that biOrigami could be incorporated into rovers, solar sails, and more. In addition to biOrigami, we are creating a novel method to efficiently transform bacteria by using the CRISPR/Cas9 system, benefitting the broader synthetic biology community. Our project integrates and improves manufacturing processes for space exploration on both the micro and macro levels.</p>
 +
      <a href="https://2015.igem.org/Team:Stanford-Brown/Vision" class="btn btn-primary btn-lg">Read More!</a>
  
      <div class="row featurette">
+
    </div>
        <div class="col-md-7">
+
          <h2 class="featurette-heading">Polystyrene <span class="small">Engineering E. coli to produce polystyrene</span></h2>
+
          <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
        </div>
+
        <div class="col-md-5">
+
          <img class="featurette-image img-responsive center-block" data-src="holder.js/500x500/auto" alt="Generic placeholder image">
+
        </div>
+
      </div>
+
  
       <hr class="featurette-divider">
+
<!--    <div class="col-md-5">
 +
       <h2 class="featurette-heading">Our BioBricks</h2>
 +
      <p class="lead">The BioBricks that we submitted to the registry are related to plastic production, cellulose binding, sporulation markers, and pigment production. Click to see more.</p>
 +
    </div>s
 +
  </div> -->
  
      <div class="row featurette">
+
  <hr>
        <div class="col-md-7 col-md-push-5">
+
          <h2 class="featurette-heading">Polyhydroxyalkanoates <span class="small">Optimizing the production of biological PHA</span></h2>
+
          <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
        </div>
+
        <div class="col-md-5 col-md-pull-7">
+
          <img class="featurette-image img-responsive center-block" data-src="holder.js/500x500/auto" alt="Generic placeholder image">
+
        </div>
+
      </div>
+
  
      <hr class="featurette-divider">
 
  
      <div class="row featurette">
+
  <div class="row featurette">
        <div class="col-md-7">
+
    <div class="col-md-7 col-md-push-5" id="be2">
          <h2 class="featurette-heading">CRATER <span class="small">Crisper Assited Transformation Efficient Reaction</span></h2>
+
      <h2 class="featurette-heading">How does it work? <span class="small"> <br>With heat, evaporation, and materials that could be produced in space</span></h2>
          <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
      <p class="lead">Bacteria can be engineered to produce thermoplastics, and some species naturally produce cellulose. These materials can be folded with heat and evaporation, respectively. Selectively heating certain parts of a thermoplastic sheet causes the polymers in only that area to contract, causing a macro-scale fold of the sheet. This selective heating can be done by coloring parts of the sheet darker, so they absorb heat faster. As for the evaporation method, bacterial spores expand and contract when in the presence of different levels of relative humidity. Attaching many spores to a long cellulose sheet can cause it to contract, and placing many of these sheets in parallel gives them the ability to move a large amount of weight as the water from the spores evaporates and they all contract in unison.</p>
        </div>
+
    </div>
        <div class="col-md-5">
+
    <div class="col-md-5 col-md-pull-7">
          <img class="featurette-image img-responsive center-block" data-src="holder.js/500x500/auto" alt="Generic placeholder image">
+
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
        </div>
+
      <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/f/f3/SB2015_SubprojectOverview.png" alt="Subproject Overview">
      </div>
+
    </div>
 +
  </div>
  
      <hr class="featurette-divider">
+
  <hr>
  
       <!-- /END THE FEATURETTES -->
+
  <div class="row featurette">
 +
    <div class="col-md-7" id="be3">
 +
       <h2 class="featurette-heading">Polystyrene <span class="small"> <br>Engineering <i>E. coli</i> to produce thermoplastics</span></h2>
 +
      <p class="lead">Polystyrene is widely-used thermoplastic that is resistant to photolysis. Our team worked on creating the first BioBricks for producing polystyrene <i>in vivo</i>. We believe that the properties of this plastic make it attractive for manufacturing objects on long-term missions to other planets. </p>
 +
      <a href="https://2015.igem.org/Team:Stanford-Brown/PS" class="btn btn-danger btn-lg">Read More!</a>
 +
    </div>
 +
  <div class="pull-right">
 +
              <a href="https://static.igem.org/mediawiki/2015/7/7d/SB2015_polymerized_styrene.jpeg" target="_blank">
 +
    <img src="https://static.igem.org/mediawiki/2015/7/7d/SB2015_polymerized_styrene.jpeg" class="pull-right img-rounded img-responsive" width="500">
 +
  </a>
 +
            <p><font size="1"><b>Polymerized Styrene</b> </font></p>
 +
          </div> 
 +
  </div>
  
 +
  <hr>
 +
 +
  <div class="row featurette">
 +
    <div class="col-md-7 col-md-push-5" id="be4">
 +
      <h2 class="featurette-heading">Poly-3-hydroxybuterate, P(3HB) <span class="small"> <br>Optimizing the biological production of additional thermoplastics </span></h2>
 +
      <p class="lead">P(3HB) is a biodegradable, non-toxic biopolymer with properties similar to those of common plastics. It has a low glass transition temperature and can be formed into flat sheets for folding biOrigami. We are building on previous iGEM teams' work to optimize the production of P(3HB) for use in space.</p>
 +
      <a href="https://2015.igem.org/Team:Stanford-Brown/PHA" class="btn btn-warning btn-lg">Read More!</a>
 +
    </div>
 +
    <div class="col-md-5 col-md-pull-7">
 +
      <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/3/3f/SB2015_p3hbsheet.jpeg">
 +
    </div>
 +
  </div>
  
      <!-- FOOTER -->
+
  <hr>
      <footer>
+
        <p class="pull-right"><a href="#">Back to top</a></p>
+
        <p>&copy; 2014 Company, Inc. &middot; <a href="#">Privacy</a> &middot; <a href="#">Terms</a></p>
+
      </footer>
+
  
     </div><!-- /.container -->
+
  <div class="row featurette">
 +
  <div class="col-md-7" id="be5">
 +
     <h2 class="featurette-heading">BioHYDRAS<span class="small"> <br>Creating biological artificial muscles</span></h2>
 +
    <p class="lead">Based on work done by Chen <i>et al.</i> at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a folding mechanism for biOrigami. Since spores are resistant to high amounts of radiation and dramatic changes in temperature, they could be suitable for use on space missions. </p>
 +
    <a href="https://2015.igem.org/Team:Stanford-Brown/bioHYDRA" class="btn btn-success btn-lg">Read More!</a>
 +
  </div><!-- end -->
 +
  <div class="col-md-5">
 +
    <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/7/70/SB2015_SEMSingleSporepng.png" alt="Generic placeholder image">
 +
  </div>
 +
</div>
  
 +
<hr>
  
    <!-- Bootstrap core JavaScript
 
    ================================================== -->
 
  
 +
<div class="row featurette">
 +
  <div class="col-md-7 col-md-push-5" id="be6"> 
  
 +
    <h2 class="featurette-heading">CRATER <span class="small"> <br>CRISPR/Cas9-Assisted Transformation-Efficient Reaction</span></h2>
 +
    <p class="lead">Our team has devised a method of increasing the efficiency of bacterial transformations&mdash;a technique used by iGEMers and biologists world-wide.</p>
 +
    <a href="https://2015.igem.org/Team:Stanford-Brown/CRATER" class="btn btn-info btn-lg">Read More!</a>
 +
  </div>
 +
  <div class="col-md-5 col-md-pull-7">
 +
    <img class="featurette-image img-responsive center-block img-rounded" src="https://static.igem.org/mediawiki/2015/7/7f/SB2015_CRATEROverview.png" alt="CRATER Overview">
 +
  </div>
 +
</div>
  
<script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/modernizr&action=raw&ctype=text/javascript"></script>
+
</div><!-- /.container -->
 +
<!-- /END THE FEATURETTES -->
  
 +
<footer>
 +
  <div class="container">
 +
    <hr></hr>
 +
    <div class="row">
 +
      <h6>Copyright &copy; 2015 Stanford-Brown iGEM Team</h6>
 +
    </div><!-- end row -->
 +
  </div><!-- end container -->
 +
</footer>
  
    <!-- Placed at the end of the document so the pages load faster -->
+
<!-- Bootstrap core JavaScript
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
+
  ================================================== -->
 +
  <script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/modernizr&action=raw&ctype=text/javascript"></script>
  
<script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/pfold&action=raw&ctype=text/javascript"></script>
+
  <!-- Placed at the end of the document so the pages load faster -->
 +
  <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
  
<script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/workaround&action=raw&ctype=text/javascript"></script>
+
  <script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/workaround&action=raw&ctype=text/javascript"></script>
    <!-- Latest compiled and minified CSS -->
+
  
    <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
+
  <!-- Latest compiled and minified CSS -->
  
    <!-- Optional theme -->
+
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
    <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap-theme.min.css">
+
  
    <!-- Latest compiled and minified JavaScript -->
+
  <!-- Latest compiled and minified JavaScript -->
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
+
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
  
<script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/oridomi&action=raw&ctype=text/javascript"></script>
+
  <link rel="stylesheet" href="//cdn.jsdelivr.net/bootstrap.material-design/0.3.0/css/material-wfont.min.css">
 +
  <link rel="stylesheet" href="//cdn.jsdelivr.net/bootstrap.material-design/0.3.0/css/material.min.css">
 +
  <link rel="stylesheet" href="//cdn.jsdelivr.net/bootstrap.material-design/0.3.0/css/ripples.min.css">
 +
  <script src="//cdn.jsdelivr.net/bootstrap.material-design/0.3.0/js/material.min.js"></script>
 +
  <script src="//cdn.jsdelivr.net/bootstrap.material-design/0.3.0/js/ripples.min.js"></script>
  
 +
  <script type="text/javascript" src="https://2015.igem.org/wiki/index.php?title=Team:Stanford-Brown/js/oridomi&action=raw&ctype=text/javascript"></script>
  
  </body>
+
</body>
  
 
</html>
 
</html>
  
 
{{:Team:Stanford-Brown/Templates/AddJS|:Team:Stanford-Brown/js/custom}}
 
{{:Team:Stanford-Brown/Templates/AddJS|:Team:Stanford-Brown/js/custom}}

Latest revision as of 03:52, 19 September 2015

Projects

Project Overview
biOrigami for Manufacturing in Space

Project Overview

Our Vision
To create biOrigami: self-folding, biological origami for space missions

Space exploration lies at the inquisitive core of human nature, yet high costs hinder the advancement of this frontier. We are harnessing the replicative properties of biology to create biOrigami—biological, self-folding origami—to reduce the mass, volume, and assembly time of materials needed for space missions. biOrigami consists of two main components: manufacturing substrates biologically and bioengineering folding mechanisms. For substrates, we are developing new BioBricks to synthesize two thermoplastics: polystyrene and polyhydroxyalkanoates. For folding mechanisms, we are using heat-induced contraction of thermoplastics and the contractile properties of bacterial spores. After consulting with experts, we believe that biOrigami could be incorporated into rovers, solar sails, and more. In addition to biOrigami, we are creating a novel method to efficiently transform bacteria by using the CRISPR/Cas9 system, benefitting the broader synthetic biology community. Our project integrates and improves manufacturing processes for space exploration on both the micro and macro levels.

Read More!

How does it work?
With heat, evaporation, and materials that could be produced in space

Bacteria can be engineered to produce thermoplastics, and some species naturally produce cellulose. These materials can be folded with heat and evaporation, respectively. Selectively heating certain parts of a thermoplastic sheet causes the polymers in only that area to contract, causing a macro-scale fold of the sheet. This selective heating can be done by coloring parts of the sheet darker, so they absorb heat faster. As for the evaporation method, bacterial spores expand and contract when in the presence of different levels of relative humidity. Attaching many spores to a long cellulose sheet can cause it to contract, and placing many of these sheets in parallel gives them the ability to move a large amount of weight as the water from the spores evaporates and they all contract in unison.
















Subproject Overview

Polystyrene
Engineering E. coli to produce thermoplastics

Polystyrene is widely-used thermoplastic that is resistant to photolysis. Our team worked on creating the first BioBricks for producing polystyrene in vivo. We believe that the properties of this plastic make it attractive for manufacturing objects on long-term missions to other planets.

Read More!

Polymerized Styrene


Poly-3-hydroxybuterate, P(3HB)
Optimizing the biological production of additional thermoplastics

P(3HB) is a biodegradable, non-toxic biopolymer with properties similar to those of common plastics. It has a low glass transition temperature and can be formed into flat sheets for folding biOrigami. We are building on previous iGEM teams' work to optimize the production of P(3HB) for use in space.

Read More!

BioHYDRAS
Creating biological artificial muscles

Based on work done by Chen et al. at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a folding mechanism for biOrigami. Since spores are resistant to high amounts of radiation and dramatic changes in temperature, they could be suitable for use on space missions.

Read More!
Generic placeholder image

CRATER
CRISPR/Cas9-Assisted Transformation-Efficient Reaction

Our team has devised a method of increasing the efficiency of bacterial transformations—a technique used by iGEMers and biologists world-wide.

Read More!
CRATER Overview

Copyright © 2015 Stanford-Brown iGEM Team